Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Learning Difference Equations With Structured Grammatical Evolution for Postprandial Glycaemia Prediction

dc.contributor.authorJoedicke, David
dc.contributor.authorKronberger, Gabriel
dc.contributor.authorParra Rodríguez, Daniel
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2025-01-30T16:25:27Z
dc.date.available2025-01-30T16:25:27Z
dc.date.issued2024-05
dc.description.abstractPeople with diabetes must carefully monitor their blood glucose levels, especially after eating. Blood glucose management requires a proper combination of food intake and insulin boluses. Glucose prediction is vital to avoid dangerous post-meal complications in treating individuals with diabetes. Although traditional methods, and also artificial neural networks, have shown high accuracy rates, sometimes they are not suitable for developing personalised treatments by physicians due to their lack of interpretability. This study proposes a novel glucose prediction method emphasising interpretability: Interpretable Sparse Identification by Grammatical Evolution. Combined with a previous clustering stage, our approach provides finite difference equations to predict postprandial glucose levels up to two hours after meals. We divide the dataset into four-hour segments and perform clustering based on blood glucose values for the two-hour window before the meal. Prediction models are trained for each cluster for the two-hour windows after meals, allowing predictions in 15-minute steps, yielding up to eight predictions at different time horizons. Prediction safety was evaluated based on Parkes Error Grid regions. Our technique produces safe predictions through explainable expressions, avoiding zones D (0.2% average) and E (0%) and reducing predictions on zone C (6.2%). In addition, our proposal has slightly better accuracy than other techniques, including sparse identification of non-linear dynamics and artificial neural networks. The results demonstrate that our proposal provides interpretable solutions without sacrificing prediction accuracy, offering a promising approach to glucose prediction in diabetes management that balances accuracy, interpretability, and computational efficiency.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1109/JBHI.2024.3371108
dc.identifier.urihttps://hdl.handle.net/20.500.14352/117397
dc.issue.number5
dc.journal.titleIEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
dc.language.isoeng
dc.page.final3078
dc.page.initial3067
dc.publisherIEEE
dc.rights.accessRightsopen access
dc.subject.keywordDiabetes
dc.subject.keywordMachine learning
dc.subject.keywordSystem dynamics
dc.subject.keywordSymbolic regression
dc.subject.keywordEvolutionary computation
dc.subject.keywordNeural networks
dc.subject.ucmInformática (Informática)
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleLearning Difference Equations With Structured Grammatical Evolution for Postprandial Glycaemia Prediction
dc.typejournal article
dc.volume.number28
dspace.entity.typePublication
relation.isAuthorOfPublication8adfcc3a-ded6-4197-9dfa-15172ba51830
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscovery8adfcc3a-ded6-4197-9dfa-15172ba51830

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Learning_Difference_Equations_With_Structured_Grammatical_Evolution_for_Postprandial_Glycaemia_Prediction.pdf
Size:
3.79 MB
Format:
Adobe Portable Document Format

Collections