Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Responsivity and resonant properties of dipole, bowtie, and spiral Seebeck nanoantennas

dc.contributor.authorMora Ventura, Brhayllan
dc.contributor.authorDíaz de León, Ramón
dc.contributor.authorGarcía Torales, Guillermo
dc.contributor.authorFlores, Jorge L.
dc.contributor.authorAlda, Javier
dc.contributor.authorGonzález, Francisco J.
dc.date.accessioned2023-06-18T06:53:56Z
dc.date.available2023-06-18T06:53:56Z
dc.date.issued2016-05-02
dc.descriptionEn abierto en la web del editor. Received Jan. 24, 2016; accepted for publication Apr. 12, 2016; published online May 2, 2016. Copyright 2016. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
dc.description.abstractSeebeck nanoantennas, which are based on the thermoelectric effect, have been proposed for electromagnetic energy harvesting and infrared detection. The responsivity and frequency dependence of three types of Seebeck nanoantennas is obtained by electromagnetic simulation for different materials. Results show that the square spiral antenna has the widest bandwidth and the highest induced current of the three analyzed geometries. However, the geometry that presented the highest temperature gradient was the bowtie antenna, which favors the thermoelectric effect in a Seebeck nanoantenna. The results also show that these types of devices can present a voltage responsivity as high as 36  μV/W36  μV/W for titanium–nickel dipoles resonant at far-infrared wavelengths.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipConsejo Nacional de Ciencia y Tecnología (CONACYT)
dc.description.sponsorshipUniversidad de Guadalajara (Mexico)
dc.description.sponsorshipUniversidad Autónoma de San Luis Potosí (Mexico)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38070
dc.identifier.doi10.1117/1.JPE.6.024501
dc.identifier.issn1947-7988 (ESSN)
dc.identifier.officialurlhttp://dx.doi.org/10.1117/1.JPE.6.024501
dc.identifier.relatedurlhttp://photonicsforenergy.spiedigitallibrary.org/article.aspx?articleid=2520464
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24530
dc.issue.number2
dc.journal.titleJournal of Photonics for Energy
dc.language.isoeng
dc.page.final1
dc.page.initial024501
dc.publisherSPIE
dc.relation.projectIDproject 32 of CEMIE-Solar
dc.relation.projectIDproject TEC2014-40442
dc.rights.accessRightsopen access
dc.subject.cdu537.533.3
dc.subject.cdu620.91
dc.subject.cdu621.396.67
dc.subject.keywordSeebeck nanoantennas
dc.subject.keywordthermoelectric nanoantennas
dc.subject.keywordsolar energy harvesting
dc.subject.ucmElectromagnetismo
dc.subject.ucmÓptica (Física)
dc.subject.ucmOptoelectrónica
dc.subject.unesco2202 Electromagnetismo
dc.subject.unesco2209.19 Óptica Física
dc.titleResponsivity and resonant properties of dipole, bowtie, and spiral Seebeck nanoantennas
dc.typejournal article
dc.volume.number6
dcterms.references1- Novotny L., and van Hulst N., “Antennas for light,” Nat. Photonics. 5, , 83 –90 (2011). 1749-4885 2- Bharadwaj P., Deutsch B., and Novotny L., “Optical antennas,” Adv. Opt. Photonics. 1, , 438 –483 (2009). 1943-8206 3- González F. J., “Optical antennas,” in Wiley Encyclopedia of Electrical and Electronics Engineering. , and Webster J., Ed., pp. 1 –5, Wiley , New York (2015). 4- Briones E. et al., “Seebeck nanoantennas for solar energy harvesting,” Appl. Phys. Lett.. 105, (9 ), 093108 (2014). 0003-6951 5- Szakmany G.P. et al., “Nanoantenna integrated infrared thermoelectric converter,” in IEEE 14th Int. Conf. Nanotechnology (IEEE-NANO 2014) , pp. 571 –573 (2014). 6- Briones E., Alda J., and Gonzalez F. J., “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express. 21, (S3 ), A412 –A418 (2013). 1094-4087 7- Szakmany G. P. et al., “Antenna-coupled single-metal thermocouple array for energy harvesting,” in 45th European Solid State Device Research Conf. (ESSDERC 2015) , pp. 89 –92 (2015). 8- Wood R. A., “Monolithic silicon microbolometric arrays,” in Uncooled Infrared Imaging Arrays and Systems. , , Kruse P. W., and Skatrud D. D., Eds., Vol. 47, pp. 45 –122, Academic Press , New York (1997). 9- Cuadrado A., Alda J., and González F. J., “Distributed bolometric effect in optical antennas and resonant structures,” J. Nanophotonics. 6, , 063512 (2012). 1934-2608 10- González F. J. et al., “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared Phys. Technol.. 52, , 48 –51 (2009). 1350-4495 11- Palik E. D., and Ghosh G., Handbook of Optical Constants of Solids. , Academic Press , San Diego (1998). 12- Cuadrado A. et al., “Detectivity comparison of bolometric optical antennas,” Proc. SPIE. 9547, , 954735 (2015). 0277-786X 13- Novotny L., “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.. 98, , 266802 (2007). 0031-9007 14- González F. J., and Boreman G. D., “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol.. 46, (5 ), 418 –428 (2005). 1350-4495
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Responsivity and resonant_SPIE_J-Photon-Energy_2016.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format

Collections