Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations
Loading...
Download
Official URL
Full text at PDC
Publication date
2014
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Department of Mathematics Texas State University
Citation
Abstract
“Sharp localized” solutions (i.e. with compact support for each given time t) of a singular nonlinear type Schrödinger equation in the whole space R N are constructed here under the assumption that they have a self-similar structure. It requires the assumption that the external forcing term satisfies that f(t, x) = t−(p−2)/2F (t−1/2x) for some complex exponent p and for some profile function F which is assumed to be with compact support in R N . We show the existence of solutions of the form u(t, x) = t p/2U(t−1/2x), with a profile U, which also has compact support in R N . The proof of the localization of the support of the profile U uses some suitable energy method applied to the stationary problem satisfied by U after some unknown transformation.