HIPOTENS: una aplicación para la predicción de episodios de hipotensión
Loading...
Official URL
Full text at PDC
Publication date
2018
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
La medicina hoy en día tiene una estrecha relación con el mundo de las TIC, ya sea para la detección de enfermedades que están presentes, para poder almacenar la información de los pacientes o para, incluso, monitorizar el estado de salud de los mismos. Gracias a estos sistemas, se pueden tratar las enfermedades que cualquier paciente puede estar sufriendo, ya que se realizaron los análisis pertinentes. Sin embargo, actualmente lo que no se está efectuando es la detección de las enfermedades antes de que puedan llegar a manifestarse.
Es en esta materia en la que destaca HIPOTENS, al tratarse de una aplicación que permite llevar a cabo la predicción de episodios de hipotensión, basándose en los datos del paciente, como es el caso del sexo, edad, enfermedades que padece y el nivel de oxígeno en sangre.
La aplicación se ha desarrollado utilizando tecnologías web, de manera que se garantiza una amplia accesibilidad desde cualquier sistema permitiendo que llegue a un mayor número de usuarios. Está formada por el predictor de episodios de hipotensión, un sistema de búsquedas de pacientes similares que sirve como explicación al resultado de la predicción, y un histórico de los pacientes para que de esta forma se pueda comparar cómo ha sido la evolución de los episodios con el paso de los años.
Este trabajo ha sido desarrollado dentro del marco de los proyectos TIN2014-55006-R y TIN2017-87330-R.
Medicine today has a close relationship with the world of ICT, either for the detection of diseases that are present, to be able to store the information of patients or even monitor their health status. Thanks to these systems, diseases that any patients may be suffering can be treated, since the relevant tests were carried out. However, it is not currently taking place is the detection of diseases before they can manifest themselves. It is in this matter that HIPOTENS stands out, since it is an application that allows predicting episodes of hypotension, based on the patient's data, such as sex, age, diseases and the level of oxygen in blood. The application has been developed using web technologies, so that wide accessibility is guaranteed from any system allowing it to reach a greater number of users. It is formed by the predictor of episodes of hypotension, a system of searches of similar patients, which serves as an explanation to the result of the prediction, as well as a history of the patients so that in this way we can compare how the episodes have evolved over the years. This work has been developed within the framework of the projects TIN2014-55006-R y TIN2017-87330-R.
Medicine today has a close relationship with the world of ICT, either for the detection of diseases that are present, to be able to store the information of patients or even monitor their health status. Thanks to these systems, diseases that any patients may be suffering can be treated, since the relevant tests were carried out. However, it is not currently taking place is the detection of diseases before they can manifest themselves. It is in this matter that HIPOTENS stands out, since it is an application that allows predicting episodes of hypotension, based on the patient's data, such as sex, age, diseases and the level of oxygen in blood. The application has been developed using web technologies, so that wide accessibility is guaranteed from any system allowing it to reach a greater number of users. It is formed by the predictor of episodes of hypotension, a system of searches of similar patients, which serves as an explanation to the result of the prediction, as well as a history of the patients so that in this way we can compare how the episodes have evolved over the years. This work has been developed within the framework of the projects TIN2014-55006-R y TIN2017-87330-R.
Description
Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, curso 2017-2018