Matrix product operator algebras II: phases of matter for 1D mixed states

dc.contributor.authorRuiz de Alarcón, Alberto
dc.contributor.authorGarre Rubio, Jose
dc.contributor.authorMolnár, Andras
dc.contributor.authorPérez García, David
dc.date.accessioned2023-06-21T02:18:10Z
dc.date.available2023-06-21T02:18:10Z
dc.description.abstractThe classification of topological phases of matter is fundamental to understand and characterize the properties of quantum materials. In this paper we study phases of matter in one-dimensional open quantum systems. We define two mixed states to be in the same phase if both states can be transformed into the other by a shallow circuit of local quantum channels. We aim to understand the phase diagram of matrix product density operators that are renormalization fixed points. These states arise, for example, as boundaries of two-dimensional topologically ordered states. We first construct families of such states based on C*-weak Hopf algebras, the algebras whose representations form a fusion category. More concretely, we provide explicit local fine-graining and local coarse-graining quantum channels for the renormalization procedure of these states. Finally, we prove that those arising from C*-Hopf algebras are in the trivial phase.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipCentro de Excelencia Severo Ochoa
dc.description.sponsorshipComunidad de Madrid
dc.description.statusunpub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73502
dc.identifier.urihttps://hdl.handle.net/20.500.14352/65275
dc.language.isoeng
dc.relation.projectIDGAPS (648913)
dc.relation.projectIDMCIN/AEI/- 10.13039/501100011033 (PID2020-113523GB-I00 and grant BES-2017-081301
dc.relation.projectIDCEX2019- 000904-S; SEV-2015-0554
dc.relation.projectIDQUITEMAD-CM (P2018/TCS-4342).
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.cdu530.1
dc.subject.keywordMathematical Physics
dc.subject.keywordQuantum Physics
dc.subject.keywordStrongly Correlated Electrons
dc.subject.keywordFísica matemática
dc.subject.ucmMatemáticas (Matemáticas)
dc.subject.ucmAnálisis matemático
dc.subject.unesco12 Matemáticas
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleMatrix product operator algebras II: phases of matter for 1D mixed states
dc.typejournal article
dcterms.references[1] Anshu, A., Arad, I., Gosset, D.: An area law for 2D frustration-free spin systems. arXiv:2103.02492 [quant-ph] (2021). doi.org/10.48550/arXiv.2103.02492 [2] Bachmann, S., Michalakis, S., Nachtergaele, B., Sims, R.: Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems. Commun. Math. Phys. 309, 835-871 (2012). doi:10.1007/s00220-011-1380-0 [3] Bardyn, C.-E., Baranov, M.A., Rico, E., Imamoglu, A., Zoller, P., Diehl, S.: Majorana Modes in Driven-Dissipative Atomic Superfluids with a Zero Chern Number. Phys. Rev. Lett. 109, 130402 (2012). doi:10.1103/PhysRevLett.109.130402 [4] Bardyn, C.-E., Baranov, M.A., Kraus, C.V., Rico, E., Imamoglu, A., Zoller, P., Diehl, S.: Topology by dissipation. New J. Phys. 15, 085001 (2013). doi:10.1088/1367-2630/15/8/085001 [5] B¨ohm, G., Szlach´anyi, K.: A coassociative C*-quantum group with nonintegral dimensions.Lett Math Phys. 38, 437-456 (1996). doi:10.1007/BF01815526 [6] Bohm, G., Nill, F., Szlachanyi, K.: Weak Hopf Algebras: I. Integral Theory and C*-Structure. Journal of Algebra. 221, 385-438 (1999). doi:10.1006/jabr.1999.7984 [7] Bohm, G., Szlachanyi, K.: Weak Hopf Algebras: II. Representation Theory, Dimensions, and the Markov Trace. Journal of Algebra. 233, 156-212 (2000). doi:10.1006/jabr.2000.8379 [8] Bravyi, S., Hastings, M.B., Michalakis, S.: Topological quantum order: Stability under local perturbations. J. Math. Phys. 51, 093512 (2010). doi:10.1063/1.3490195 [9] Brandao, F.G.S.L., Cubitt, T.S., Lucia, A., Michalakis, S., Pérez-García, D.: Area law for fixed points of rapidly mixing dissipative quantum systems. J. Math. Phys. 56, 102202 (2015). doi:10.1063/1.4932612 [10] Bultinck, N., Mari¨en, M., Williamson, D.J., S¸ahinoˇglu, M.B., Haegeman, J., Verstraete, F.: Anyons and matrix product operator algebras. Annals of Physics. 378, 183-233 (2017). doi:10.1016/j.aop.2017.01.004 [11] Chen, X., Gu, Z.-C., Wen, X.-G.: Local unitary transformation, long-range quantum en�tanglement, wave function renormalization, and topological order. Phys. Rev. B. 82, 155138 (2010). doi:10.1103/PhysRevB.82.155138 [12] Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one�dimensional spin systems. Phys. Rev. B. 83, 035107 (2011). doi:10.1103/PhysRevB.83.035107 [13] Cirac, J.I., Poilblanc, D., Schuch, N., Verstraete, F.: Entanglement spectrum and bound�ary theories with projected entangled-pair states. Phys. Rev. B. 83, 245134 (2011). doi:10.1103/PhysRevB.83.245134 [14] Cirac, J.I., P´erez-Garc´ıa, D., Schuch, N., Verstraete, F.: Matrix product density operators: Renormalization fixed points and boundary theories. Annals of Physics. 378, 100-149 (2017). doi:10.1016/j.aop.2016.12.030 [15] Cirac, J.I., P´erez-Garc´ıa, D., Schuch, N., Verstraete, F.: Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys. 93, 045003 (2021). doi:10.1103/RevModPhys.93.045003 [16] Coser, A., P´erez-Garc´ıa, D.: Classification of phases for mixed states via fast dissipative evolution. Quantum. 3, 174 (2019). doi:10.22331/q-2019-08-12-174 [17] Diehl, S., Rico, E., Baranov, M.A., Zoller, P.: Topology by dissipation in atomic quantum wires. Nature Phys. 7, 971-977 (2011). doi:10.1038/nphys2106 [18] Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581-642 (2005). doi:10.4007/annals.2005.162.581 [19] Etingof, P., Gelaki, S.: Descent and Forms of Tensor Categories. International Mathematics Research Notices. 2012, 3040-3063 (2012). doi:10.1093/imrn/rnr119 [20] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories. American Mathematical Society, Providence, Rhode Island (2015). [21] Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Bull. Amer. Math. Soc. 40, 31-38 (2002). doi:10.1090/S0273-0979-02-00964-3 [22] Grusdt, F.: Topological order of mixed states in correlated quantum many-body systems. Phys. Rev. B. 95, 075106 (2017). doi:10.1103/PhysRevB.95.075106 [23] Hastings, M.B., Wen, X.-G.: Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B. 72, 045141 (2005). doi:10.1103/PhysRevB.72.045141 [24] Hastings, M.B.: An area law for one-dimensional quantum systems. J. Stat. Mech. 2007, P08024-P08024 (2007). doi:10.1088/1742-5468/2007/08/P08024 [25] Kac, G.I., Paljutkin, V.G.: Finite ring groups. Trans. Moscow Math Soc., 251-294 (1966). [26] Kastoryano, M.J., Lucia, A., P´erez-Garc´ıa, D.: Locality at the Boundary Im�plies Gap in the Bulk for 2D PEPS. Commun. Math. Phys. 366, 895-926 (2019). doi:10.1007/s00220-019-03404-9 [27] Kitaev, A.Yu.: Fault-tolerant quantum computation by anyons. Annals of Physics. 303, 2-30 (2003). doi:10.1016/S0003-4916(02)00018-0 [28] K¨onig, R., Pastawski, F.: Generating topological order: No speedup by dissipation. Phys. Rev. B. 90, 045101 (2014). doi:10.1103/PhysRevB.90.045101 [29] Levin, M.A., Wen, X.-G.: String-net condensation: A physical mechanism for topological phases. Phys. Rev. B. 71, 045110 (2005). doi:10.1103/PhysRevB.71.045110 [30] Li, H., Haldane, F.D.M.: Entanglement Spectrum as a Generalization of Entanglement En�tropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States. Phys. Rev. Lett. 101, 010504 (2008). doi:10.1103/PhysRevLett.101.010504 [31] Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Com�mun.Math. Phys. 28, 251-257 (1972). doi:10.1007/BF01645779 [32] Longo, R. ed: Mathematical Physics in Mathematics and Physics. American Mathematical Society, Providence, Rhode Island (2001) [33] Moln´ar, A., Ruiz de Alarc´on, A., Garre-Rubio, J., Schuch, N., Cirac, J.I., P´erez-Garc´ıa, D.: Matrix product operator algebras I: representations of weak Hopf algebras and projected entangled pair states. arXiv:2204.05940 (2022). [34] Montgomery, S.: Representation Theory of Semisimple Hopf Algebras. En: Roggenkamp, I.K.W. y S¸tef˘anescu, M. (eds.) Algebra - Representation Theory. pp. 189-218. Springer Netherlands, Dordrecht (2001) [35] Nikshych, D.: Semisimple weak Hopf algebras. Journal of Algebra. 275, 639-667 (2004). doi:10.1016/j.jalgebra.2003.09.025 [36] Nill, F.: Axioms for Weak Bialgebras. ArXiv:math/9805104 [math.QA]. (1998). doi:10.48550/arXiv.math/9805104 [37] Ogata, Y.: A classification of pure states on quantum spin chains satisfying the split prop�erty with on-site finite group symmetries. Trans. Amer. Math. Soc. Ser. B. 8, 39-65 (2021).doi:10.1090/btran/51 [38] Pérez-García, D., Pérez-Hernández, A.: Locality estimates for complex time evolution in 1D. arXiv:2004.10516 [math-ph] (2020). doi:10.48550/arXiv.2004.10516 [39] S¸ahinoˇglu, M.B., Williamson, D., Bultinck, N., Mari¨en, M., Haegeman, J., Schuch, N., Ver�straete, F.: Characterizing Topological Order with Matrix Product Operators. Ann. Henri Poincar´e. 22, 563-592 (2021). doi:10.1007/s00023-020-00992-4 [40] Schuch, N., Pérez-García, D., Cirac, J.I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B. 84, 165139 (2011). doi:10.1103/PhysRevB.84.165139 [41] Schuch, N., Poilblanc, D., Cirac, J.I., P´erez-Garc´ıa, D.: Topological Order in the Projected Entangled-Pair States Formalism: Transfer Operator and Boundary Hamiltonians. Phys. Rev. Lett. 111, 090501 (2013). doi:10.1103/PhysRevLett.111.090501 [42] Wolf, M.M., Verstraete, F., Hastings, M.B., Cirac, J.I.: Area Laws in Quantum Systems: Mutual Information and Correlations. Phys. Rev. Lett. 100, 070502 (2008). doi:10.1103/PhysRevLett.100.070502
dspace.entity.typePublication
relation.isAuthorOfPublication5edb2da8-669b-42d1-867d-8fe3144eb216
relation.isAuthorOfPublication.latestForDiscovery5edb2da8-669b-42d1-867d-8fe3144eb216

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
perezgarcia_matrixII.pdf
Size:
370.65 KB
Format:
Adobe Portable Document Format

Collections