Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy
dc.contributor.author | Ahijado Guzmán, Rubén | |
dc.contributor.author | Bañares Morcillo, Luis | |
dc.contributor.author | Guerrero Martínez, Andrés | |
dc.contributor.author | López Montero, Iván | |
dc.contributor.author | Tardajos Rodríguez, Gloria María | |
dc.contributor.author | González Rubio, Guillermo | |
dc.contributor.author | Izquierdo, Jesús G. | |
dc.contributor.author | Calzado Martín, Alicia | |
dc.contributor.author | Calleja, Montserrat | |
dc.date.accessioned | 2023-06-18T06:00:36Z | |
dc.date.available | 2023-06-18T06:00:36Z | |
dc.date.issued | 2016 | |
dc.description | The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (ERC grant agreement n° 338133) | en |
dc.description.abstract | The search for efficient plasmonic photothermal therapies using nonharmful pulse laser irradiation at the near-infrared (NIR) is fundamental for biomedical cancer research. Therefore, the development of novel assembled plasmonic gold nanostructures with the aim of reducing the applied laser power density to a minimum through hot-spot-mediated cell photothermolysis is an ongoing challenge. We demonstrate that gold nanorods (Au NRs) functionalized at their tips with a pH-sensitive ligand assemble into oligomers within cell lysosomes through hydrogen-bonding attractive interactions. The unique intracellular features of the plasmonic oligomers allow us to significantly reduce the femtosecond laser power density and Au NR dose while still achieving excellent cell killing rates. The formation of gold tip-to-tip oligomers with longitudinal localized surface plasmon resonance bands at the NIR, obtained from low-aspect-ratio Au NRs close in resonance with 800 nm Ti:sapphire 90 fs laser pulses, was found to be the key parameter for realizing the enhanced plasmonic photothermal therapy. | en |
dc.description.department | Depto. de Química Física | |
dc.description.faculty | Fac. de Ciencias Químicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Unión Europea | |
dc.description.sponsorship | Ministerio de Economía, Comercio y Empresa (España) | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/60108 | |
dc.identifier.citation | Ahijado-Guzmán R, González-Rubio G, Izquierdo JG, Bañares L, López-Montero I, Calzado-Martín A, Calleja M, Tardajos G, Guerrero-Martínez A. Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy. ACS Omega. 2016 Sep 30;1(3):388-395. doi: 10.1021/acsomega.6b00184. Epub 2016 Sep 16. | |
dc.identifier.doi | 10.1021/acsomega.6b00184 | |
dc.identifier.issn | 2470-1343 | |
dc.identifier.officialurl | https://doi.org/10.1021/acsomega.6b00184 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/23742 | |
dc.issue.number | 3 | |
dc.journal.title | ACS Omega | |
dc.language.iso | eng | |
dc.page.final | 395 | |
dc.page.initial | 388 | |
dc.publisher | American Chemical Society | |
dc.relation.projectID | MITOCHON (338133) and NANOFORCELLS (278860) | |
dc.relation.projectID | (MAT2014-59678-R and CTQ2012-37404-C02-01) | |
dc.relation.projectID | NANOBIOSOMA (S2013/MIT-2807) | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.cdu | 544 | |
dc.subject.keyword | Drug delivery systems | |
dc.subject.keyword | Laser radiation | |
dc.subject.keyword | Nanostructures | |
dc.subject.keyword | Pharmacology | |
dc.subject.ucm | Materiales | |
dc.subject.ucm | Química física (Química) | |
dc.subject.unesco | 3312 Tecnología de Materiales | |
dc.subject.unesco | 2307 Química Física | |
dc.title | Intracellular pH-Induced Tip-to-Tip Assembly of Gold Nanorods for Enhanced Plasmonic Photothermal Therapy | |
dc.type | journal article | |
dc.volume.number | 1 | |
dcterms.references | (1) Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217−228. (2) Guerrero-Martínez, A.; Grzelczak, M.; Liz-Marzan, L. M. ́Molecular thinking for nanoplasmonic design. ACS Nano 2012, 6, 3655−3662. (3) Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870−1901. (4) Becker, J.; Trügler, A.; Jakab, A.; Hohenester, U.; Sönnichsen, C. The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Biosensing. Plasmonics 2010, 5, 161−167. (5) Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316−317. (6) Lukianova-Hleb, E. Y.; Kim, Y.-S.; Beatsarkouski, I.; Gillenwater, A. M.; O’Neill, B. E.; Laptoko, D. O. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nat. Nanotechnol. 2016, 11, 525−532. (7) Abadeer, N. S.; Murphy, C. J. Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 4691− 4716. (8) Gonzalez-Rubio, G.; Guerrero-Martínez, A.; Liz-Marza ́ n, L. M. ́ Reshaping, Fragmentation and Assembly of Gold Nanoparticles Assisted by Pulse Lasers. Acc. Chem. Res. 2016, 49, 678−686. (9) Perez-Hernández, M.; Del Pino, P.; Mitchell, S. G.; Moros, M.; ́Stepien, G.; Pelaz, B.; Parak, W. J.; Galvez, E. M.; Pardo, J.; Martínez de la Fuente, J. Dissecting the Molecular Mechanism of Apoptosis during Photothermal Therapy Using Gold Nanoprisms. ACS Nano 2015, 9, 52−61. (10) Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y.; Li, X. Immuno Gold Nanocages with Tailored Optical Properties for Targeted Photothermal Destruction of Cancer Cells. Nano Lett. 2007, 7, 1318−1322. (11) Liu, Y.; Yang, M.; Zhang, J.; Zhi, X.; Li, C.; Zhang, C.; Pan, F.; Wang, K.; Yang, Y.; Martínez de la Fuente, J.; Cui, D. Human Induced Pluripotent Stem Cells for Tumor Targeted Delivery of Gold Nanorods and Enhanced Photothermal Therapy. ACS Nano 2016, 10, 2375−2385. (12) El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Selective laser photothermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006, 239, 129−135. (13) Huang, X.; Kang, B.; Qian, W.; Mackey, M. A.; Chen, P. C.; Oyelere, A. K.; El-Sayed, I. H.; El-Sayed, M. A. Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasmtargeted gold nanospheres: continuous wave or pulsed lasers. J. Biomed. Opt. 2010, 15, No. 058002, DOI: 10.1117/1.3486538. (14) American National Standard for Safe Use of Lasers; Laser Institute of America: Orlando, FL, 2000. (15) Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT Peptide-Functionalized Gold Nanostars: Enhanced Intracellular Delivery and Efficient NIR Photothermal Therapy Using Ultralow Irradiance. J. Am. Chem. Soc. 2012, 134, 11358−11361. (16) Klinkova, A.; Choueiri, R. M.; Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 2014, 43, 3976−3991. (17) Álvarez-Puebla, R.; Liz-Marzan, L. M.; García de Abajo, F. J. ́Light Concentration at the Nanometer Scale. J. Phys. Chem. Lett. 2010, 1, 2428−2434. (18) Herrmann, L. O.; Valev, V. K.; Tserkezis, C.; Barnard, J. S.; Kasera, S.; Scherman, O. A.; Aizpurua, J.; Baumberg, J. J. Threading plasmonic nanoparticle strings with light. Nat. Commun. 2014, 5, No. 4568. (19) Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 2012, 74, 69−86. (20) Ma, X.; Wu, Y.; Jin, S.; Tian, Y.; Zhang, X.; Zhao, Y.; Yu, L.; Liang, X. J. Gold Nanoparticles Induce Autophagosome Accumulation through Size-Dependent Nanoparticle Uptake and Lysosome Impairment. ACS Nano 2011, 5, 8629−8639. (21) Nam, J.; Won, N.; Jin, H.; Chung, H.; Kim, S. pH-Induced Aggregation of Gold Nanoparticles for Photothermal Cancer Therapy. J. Am. Chem. Soc. 2009, 131, 13639−13645. (22) Ni, W.; Mosquera, R. A.; Perez-Juste, J.; Liz-Marzán, L. M. ́Evidence for Hydrogen Bonding-Directed Assembly of Gold Nanorods in Aqueous Solution. J. Phys. Chem. Lett. 2010, 1, 1181−1185. (23) Gonzalez-Rubio, G.; Gonza ́ lez-Izquierdo, J.; Bañares, L.; Tardajos, G.; Rivera, A.; Altantzis, T.; Bals, S.; Peña-Rodríguez, O.; Guerrero-Martínez, A.; Liz-Marzan, L. M. Femtosecond Laser-Controlled Tip-to-tip Assembly and Welding of Gold Nanorods. Nano Lett. 2015, 15, 8282−8288. (24) Link, S.; Wang, Z. L.; El-Sayed, M. A. How does a gold nanorod melt? J. Phys. Chem. B 2000, 104, 7867−7870. (25) Ye, X.; Jin, L.; Caglayan, H.; Chen, J.; Xing, G.; Zheng, C.; Doan-Nguyen, V.; Kang, Y.; Engheta, N.; Kagan, C. R.; Murray, C. B. Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano 2012, 6, 2804−2817. (26) Gomez-Graña, S.; Hubert, F.; Testard, F.; Guerrero-Martínez, A.; Grillo, I.; Liz-Marzan, L. M.; Spalla, O. Surfactant (bi)layers on gold nanorods. Langmuir 2012, 28, 1453−1459. (27) Soliman, M. G.; Pelaz, B.; Parak, W. J.; del Pino, P. Phase Transfer and Polymer Coating Methods toward Improving the Stability of Metallic Nanoparticles for Biological Applications. Chem. Mater. 2015, 27, 990−997. (28) del Pino, P.; Yang, F.; Pelaz, B.; Zhang, Q.; Kantner, K.; Hartmann, R.; Martinez de Baroja, N.; Gallego, M.; Möller, M.; Manshian, B. B.; Soenen, S. J.; Riedel, R.; Hampp, N.; Paraka, W. J. Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells. Angew. Chem., Int. Ed. 2016, 55, 5483−5487. (29) Pelaz, B.; del Pino, P.; Maffre, P.; Hartmann, R.; Gallego, M.; Rivera-Fernandez, S.; Martínez de la Fuente, J.; Nienhaus, G. U.; ́Parak, W. J. Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano 2015, 9, 6996−7008. (30) Rosman, C.; Pierrat, S.; Henkel, A.; Tarantola, M.; Schneider, D.; Sunnick, E.; Janshoff, A.; Sönnichsen, C. A New Approach to Assess Gold Nanoparticle Uptake by Mammalian Cells: Combining Optical Dark-Field and Transmission Electron Microscopy. Small 2012, 8, 3683−3690. (31) Smith, A. R.; Shenvi, S. V.; Widlansky, M.; Suh, J. H.; Hagen, T. M. Lipoic acid as a pontential therapy for chronic diseases associated with oxidative stress. Curr. Med. Chem. 2004, 11, 1135−1146. (32) Chadwick, S. J.; Salah, D.; Livesey, P. M.; Brust, M.; Volk, M. Singlet Oxygen Generation by Laser Irradiation of Gold Nanoparticles. J. Phys. Chem. C 2016, 120, 10647−10657. (33) Guerrero-Martínez, A.; Barbosa, S.; Pastoriza-Santos, I.; LizMarzan, L. M. Nanostars shine bright for you. Colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr. Top. Colloid Interface Sci. 2011, 16, 118−127. (34) Espinosa, A.; Silva, A. K. A.; Sanchez-Iglesias, A.; Grzelczak, M.; ́Pechoux, C.; Desboeufs, K.; Liz-Marza ́ n, L. M.; Wilhelm, C. Cancer ́Cell Internalization of Gold Nanostars Impacts Their Photothermal Efficiency In Vitro and In Vivo: Toward a Plasmonic Thermal Fingerprint in Tumoral Environment. Adv. Healthcare Mater. 2016, 5,1040−1048. (35) Ekici, O.; Harrison, R. K.; Durr, N. J.; Eversole, D. S.; Lee, M.; Ben-Yakar, A. Thermal analysis of gold nanorods heated with femtosecond laser pulses. J. Phys. D: Appl. Phys. 2008, 41, No. 185501. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4af13c82-c400-4bf3-9103-829be26b4d63 | |
relation.isAuthorOfPublication | b2340482-256f-41d0-ad15-29806cf6a753 | |
relation.isAuthorOfPublication | 22761001-a3ad-4b9e-b47f-bfd3ba5f8a57 | |
relation.isAuthorOfPublication | f695bacc-278b-4155-93dc-eaa4b0ec28fe | |
relation.isAuthorOfPublication | dd9a6f00-d20a-432d-85d6-da06fd6affb3 | |
relation.isAuthorOfPublication.latestForDiscovery | 4af13c82-c400-4bf3-9103-829be26b4d63 |
Download
Original bundle
1 - 1 of 1