Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector
dc.contributor.author | Martil De La Plaza, Ignacio | |
dc.contributor.author | García Hemme, Eric | |
dc.contributor.author | García Hernansanz, Rodrigo | |
dc.contributor.author | González Díaz, Germán | |
dc.contributor.author | Olea Ariza, Javier | |
dc.contributor.author | Pastor Pastor, David | |
dc.contributor.author | Prado Millán, Álvaro Del | |
dc.date.accessioned | 2023-06-19T13:26:10Z | |
dc.date.available | 2023-06-19T13:26:10Z | |
dc.date.issued | 2014-05-26 | |
dc.description | © AIP Publishing LLC. The authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantations and metallic evaporations. This work was partially supported by the Project NUMANCIA II (Grant No. S-2009/ENE/1477) funded by the Comunidad de Madrid. Research by E. Garca-Hemme was also supported by a PICATA predoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM). J. Olea and D. Pastor thank Professor A. Mart_ı and Professor A. Luque for useful discussions and guidance and acknowledge financial support from the MICINN within the program Juan de la Cierva (JCI-2011-10402 and JCI-2011-11471), under which this research was undertaken. | |
dc.description.abstract | We report room-temperature operation of 1 x 1 cm(2) infrared photoconductive photodetectors based on silicon supersaturated with titanium. We have fabricated these Si-based infrared photodetectors devices by means of ion implantation followed by a pulsed laser melting process. A high sub-band gap responsivity of 34 mVW(-1) has been obtained operating at the useful telecommunication applications wavelength of 1.55 mu m (0.8 eV). The sub-band gap responsivity shows a cut-off frequency as high as 1.9 kHz. These Si-based devices exhibit a non-previous reported specific detectivity of 1.7 x 10(4) cm Hz(1/2) W-1 at 660Hz, under a 1.55 mu m wavelength light. This work shows the potential of Ti supersaturated Si as a fully CMOS-compatible material for the infrared photodetection technology. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Moncloa Campus of International Excellence (UCM-UPM) | |
dc.description.sponsorship | MICINN | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/27164 | |
dc.identifier.doi | 10.1063/1.4879851 | |
dc.identifier.issn | 0003-6951 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.4879851 | |
dc.identifier.relatedurl | http://scitation.aip.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33683 | |
dc.issue.number | 21 | |
dc.journal.title | Applied physics letters | |
dc.language.iso | eng | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | NUMANCIA II (S2009/ENE-1477) | |
dc.relation.projectID | (JCI-2011-10402) | |
dc.relation.projectID | (JCI-2011-11471) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.keyword | Transition | |
dc.subject.keyword | Insulator | |
dc.subject.keyword | Gold. | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.title | Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector | |
dc.type | journal article | |
dc.volume.number | 104 | |
dcterms.references | 1) X. Liu, B. Kuyken, G. Roelkens, R. Baets, R.M. Osgood, Jr., and W.M.J. Green, Nat. Photonics, 6, 667 (2012). 2) Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, Nat. Commun., 4, 1811 (2013). 3) V.S. Varavin, V.V. Vasiliev, S.A. Dvoretsky, N.N. Mikhailov, V.N. Ovsyuk, Y.G. Sidorov, A.O. Suslyakov, M.V. Yakushev, and A.L. Aseev, Opto-Electron. Rev., 11, 99 (2003). 4) A. Rogalski, Prog. Quantum Electron., 27, 59 (2003). 5) B.F. Levine, J. Appl. Phys., 74, R1 (1993). 6) S. Chakrabarti, A.D. Stiff-Roberts, X.H. Su, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, J. Phys. D: Appl. Phys., 38, 2135 (2005). 7) R.H. Dicke, Rev. Sci. Instrum., 17, 268 (1946). 8) B.K. Newman, E. Ertekin, J.T. Sullivan, M.T. Winkler, M.A. Marcus, S.C. Fakra, M.-J. Sher, E. Mazur, J.C. Grossman, and T. Buonassisi, J. Appl. Phys., 114, 133507 (2013). 9) D. Recht, J.T. Sullivan, R. Reedy, T. Buonassisi, and M.J. Aziz, Appl. Phys. Lett., 100, 112112 (2012). 10) C.B. Simmons, A.J. Akey, J.J. Krich, J.T. Sullivan, D. Recht, M.J. Aziz, and T. Buonassisi, J. Appl. Phys., 114, 243514 (2013). 11) J.T. Sullivan, R.G. Wilks, M.T. Winkler, L. Weinhardt, D. Recht, A.J. Said, B.K. Newman, Y. Zhang, M. Blum, S. Krause, W.L. Yang, C. Heske, M.J. Aziz, M. Baer, and T. Buonassisi, Appl. Phys. Lett., 99, 142102 (2011). 12) J.T. Sullivan, C.B. Simmons, J.J. Krich, A.J. Akey, D. Recht, M.J. Aziz, and T. Buonassisi, J. Appl. Phys., 114, 103701 (2013). 13) A.J. Said, D. Recht, J.T. Sullivan, J.M. Warrender, T. Buonassisi, P.D. Persans, and M.J. Aziz, Appl. Phys. Lett., 99, 073503 (2011). 14) C.B. Simmons, J.A. Akey, J.P. Mailoa, D. Recht, M.J. Aziz, and T. Buonassisi, Adv. Funct. Mater., 2014, 201303820. 15) E. García-Hemme, R. García-Hernánsanz, J. Olea, D. Pastor, Á. del Prado, I. Mártil, and G. González-Díaz, Appl. Phys. Lett., 101, 192101 (2012). 16) E. García-Hemme, R. García-Hernánsanz, J. Olea, D. Pastor, Á. del Prado, I. Mártil, and G. González-Díaz, Appl. Phys. Lett., 103, 032101 (2013). 17) S. Silvestre, A. Boronat, M. Colina, L. Castañer, J. Olea, D. Pastor, Á. del Prado, I. Mártil, G. González-Díaz, A. Luque, E. Antolín, E. Hernández, I. Ramiro, I. Artacho, E. López, and A. Martí, Jpn. J. Appl. Phys., 52, 122302 (2013). 18) J. Olea, Á. del Prado, D. Pastor, I. Mártil, and G. González-Díaz, J. Appl. Phys., 109, 113541 (2011). 19) J.P. Mailoa, A.J. Akey, C.B. Simmons, D. Hutchinson, J. Mathews, J.T. Sullivan, D. Recht, M.T. Winkler, J.S. Williams, J.M. Warrender, P.D. Persans, M.J. Aziz, and T. Buonassisi, Nat. Commun., 5, 3011 (2014). 20) A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B, 382, 320 (2006). 21) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys., 107, 103524 (2010). 22) D. Pastor, J. Olea, Á. del Prado, E. García-Hemme, R. García-Hernánsanz, and G. González-Díaz, Sol. Energy Mater. Sol. Cells, 104, 159 (2012). 23) E. García-Hemme, R. García-Hernánsanz, J. Olea, D. Pastor, Á. del Prado, I. Mártil, P. Wahnon, K. Sánchez, P. Palacios, and G. González-Díaz, Int. J. Photoenergy, 2013, 473196. 24) C. Goletti, G. Bussetti, P. Chiaradia, and G. Chiarotti, J. Phys.: Condens. Matter, 16, S4289 (2004). 25) A.D. Bristow, N. Rotenberg, and H.M. van Driel, Appl. Phys. Lett., 90, 191104 (2007). 26) J.R. Morante, J.E. Carceller, P. Cartujo, and J. Barbolla, Solid-State Electron., 26, 1 (1983). 27) M.V. Kurik, Phys. Status Solidi A, 8, 9 (1971). 28) S. Braun and H.G. Grimmeis, J. Appl. Phys., 45, 2658 (1974). 29) M. Okuyama, N. Matsunaga, J.W. Chen, and A.G. Milnes, J. Electron. Mater., 8, 501 (1979). 30) A. Luque, A. Martí, and C. Stanley, Nat. Photonics, 6, 146 (2012). 31) N. López, L.A. Reichertz, K.M. Yu, K. Campman, and W. Walukiewicz, Phys. Rev. Lett., 106, 028701 (2011). 32) N.F. Mott, Adv. Phys., 21, 785 (1972). 33) M.T. Winkler, D. Recht, M.-J. Sher, A.J. Said, E. Mazur, and M.J. Aziz, Phys. Rev. Lett., 106, 178701 (2011). 34) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett., 94, 042115 (2009). 35) J.J. Krich, B.I. Halperin, and A. Aspuru-Guzik, J. Appl. Phys., 112, 013707 (2012). 36) J. Olea, D. Pastor, Á. del Prado, E. García-Hemme, R. García-Hernánsanz, I. Mártil, and G. González-Díaz, J. Appl. Phys., 114, 053110 (2013). 37) E. Monticone, L. Boarino, G. Lerondel, R. Steni, G. Amato, and V. Lacquaniti, Appl. Surf. Sci., 142, 267 (1999). 38) See supplementary material at http://dx.doi.org/10.1063/1.4879851 for the figure of the spectral noise density as a function of the frequency as well as for a TEM and STEM images and an EDX analysis of the Ti supersaturated Si material. Also some discussion is provided. 39) D. Pastor, J. Olea, Á. del Prado, E. García-Hemme, R. García-Hernánsanz, I. Mártil, and G. González-Díaz, J. Phys. D: Appl. Phys., 46, 135108 (2013). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6db57595-2258-46f1-9cff-ed8287511c84 | |
relation.isAuthorOfPublication | 765f38c4-71cb-441b-b2a8-d88c5cdcf086 | |
relation.isAuthorOfPublication | 838d6660-e248-42ad-b8b2-0599f3a4542b | |
relation.isAuthorOfPublication | a5ab602d-705f-4080-b4eb-53772168a203 | |
relation.isAuthorOfPublication | 12efa09d-69f7-43d4-8a66-75d05b8fe161 | |
relation.isAuthorOfPublication | 0f0a0600-ce06-4d5b-acee-eb68dd4c9853 | |
relation.isAuthorOfPublication | 7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0 | |
relation.isAuthorOfPublication.latestForDiscovery | 838d6660-e248-42ad-b8b2-0599f3a4542b |
Download
Original bundle
1 - 1 of 1