Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Deep Learning for Land Cover Classification Using Only a Few Bands

dc.contributor.authorKwan, Chiman
dc.contributor.authorAyhan, Bulent
dc.contributor.authorBudavari, Bence
dc.contributor.authorLu, Yan
dc.contributor.authorPérez, Daniel
dc.contributor.authorLi, Jiang
dc.contributor.authorBernabé García, Sergio
dc.contributor.authorPlaza, Antonio
dc.date.accessioned2023-06-17T09:11:15Z
dc.date.available2023-06-17T09:11:15Z
dc.date.issued2020-06-22
dc.description.abstractThere is an emerging interest in using hyperspectral data for land cover classification. The motivation behind using hyperspectral data is the notion that increasing the number of narrowband spectral channels would provide richer spectral information and thus help improve the land cover classification performance. Although hyperspectral data with hundreds of channels provide detailed spectral signatures, the curse of dimensionality might lead to degradation in the land cover classification performance. Moreover, in some practical applications, hyperspectral data may not be available due to cost, data storage, or bandwidth issues, and RGB and near infrared (NIR) could be the only image bands available for land cover classification. Light detection and ranging (LiDAR) data is another type of data to assist land cover classification especially if the land covers of interest have different heights. In this paper, we examined the performance of two Convolutional Neural Network (CNN)-based deep learning algorithms for land cover classification using only four bands (RGB+NIR) and five bands (RGB+NIR+LiDAR), where these limited number of image bands were augmented using Extended Multi-attribute Profiles (EMAP). The deep learning algorithms were applied to a well-known dataset used in the 2013 IEEE Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest. With EMAP augmentation, the two deep learning algorithms were observed to achieve better land cover classification performance using only four bands as compared to that using all 144 hyperspectral bands.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUS Department of Energy
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67512
dc.identifier.doi10.3390/rs12122000
dc.identifier.issn2072-4292
dc.identifier.officialurlhttps://doi.org/10.3390/rs12122000
dc.identifier.relatedurlhttps://www.mdpi.com/2072-4292/12/12/2000
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8355
dc.issue.number12
dc.journal.titleRemote Sensing
dc.language.isoeng
dc.page.initial2000
dc.publisherMDPI
dc.relation.projectID# DE-SC0019936
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordLand cover classification
dc.subject.keywordhyperspectral
dc.subject.keywordEMAP
dc.subject.keywordaugmented bands
dc.subject.keywordLiDAR
dc.subject.keyworddata fusion
dc.subject.ucmInformática (Informática)
dc.subject.ucmTelecomunicaciones
dc.subject.unesco1203.17 Informática
dc.subject.unesco3325 Tecnología de las Telecomunicaciones
dc.titleDeep Learning for Land Cover Classification Using Only a Few Bands
dc.typejournal article
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication092818da-fd6a-4d1f-ba39-7e6098841e99
relation.isAuthorOfPublication.latestForDiscovery092818da-fd6a-4d1f-ba39-7e6098841e99

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-12-02000.pdf
Size:
5.14 MB
Format:
Adobe Portable Document Format

Collections