Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A CPU-GPU Parallel Ant Colony Optimization Solver for the Vehicle Routing Problem

Citation

Rey, A., Prieto, M., Gómez, J.I., Tenllado, C., Hidalgo, J.I. (2018). A CPU-GPU Parallel Ant Colony Optimization Solver for the Vehicle Routing Problem. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham.

Abstract

This paper exposes a new hybrid approach based on Ant Colony Optimization heuristics, Route First-Cluster Second methods and Local search procedures, combined to generate high quality solutions for the Vehicle Routing Problem. This method uses the parallel computing power of modern general purpose GPUs and multicore CPUs, outperforming current ACO-based VRP solvers and showing to be a competitive approach compared to other high performing metaheuristic solvers.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections