Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Influence of thermally induced oxygen order on mobile ion dynamics in Gd_(2)(Ti_(0.65)Zr_(0.35))_(2)O_(7)

dc.contributor.authorMoreno, Karla J.
dc.contributor.authorFuentes, Antonio F.
dc.contributor.authorMaczka, Miroslaw
dc.contributor.authorHanuza, Jerzy
dc.contributor.authorAmador, Ulises
dc.contributor.authorSantamaría Sánchez-Barriga, Jacobo
dc.contributor.authorLeón Yebra, Carlos
dc.date.accessioned2023-06-20T10:53:50Z
dc.date.available2023-06-20T10:53:50Z
dc.date.issued2007-05
dc.description© 2007 The American Physical Society. This work was supported by Mexican Conacyt SEP- 2003-C02-44075 and Spanish MCYT MAT2004-3070.
dc.description.abstractWe report on the influence of oxygen order in the oxygen-ion dynamics in the ionic conductor Gd_(2)(Ti_(0.65)Zr_(0.35))_(2)O_(7). The metastable Gd_(2)(Ti_(0.65)Zr_(0.35))_(2)O_(7) powders prepared by mechanical milling present an anion-deficient fluorite type of structure, stable up to about 800 °C. Thermal treatments at higher temperatures facilitate the gradual rearrangement of the cation and anion substructures and the relaxation of mechanochemically induced defects. Interestingly, metastable pyrochlores showing a very unusual cation distribution were observed during the thermally induced defect-recovery process. We have found that the ionic conductivity due to mobile oxygen ions increases significantly with increasing sintering temperature from 800 to 1500 °C as a result of a systematic decrease in the activation energy for the dc conductivity from 1.23 to 0.78 eV. Electrical conductivity relaxation is well described by stretched exponentials of the form φ(t)=exp[-(t/τ)^(1−n)], and the fractional exponent n decreases systematically from n=0.51 to 0.18 with increasing sintering temperature. These results are explained in terms of weaker ion-ion interactions in the increasingly ordered structure of the samples sintered at higher temperatures, and point to the importance of structural disorder in determining the dynamics of mobile oxygen ions.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMexican Conacyt
dc.description.sponsorshipSpanish MCYT
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30542
dc.identifier.doi10.1103/PhysRevB.75.184303
dc.identifier.issn1098-0121
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevB.75.184303
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51412
dc.issue.number18
dc.journal.titlePhysical review B
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDSEP-2003-C02-44075
dc.relation.projectIDMAT2004-3070
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordElectrical relaxation
dc.subject.keywordConstituent oxides
dc.subject.keywordSolid-solutions
dc.subject.keywordPyrochlore
dc.subject.keywordMicrostructure
dc.subject.keywordCondcutivity
dc.subject.keywordDiffraction
dc.subject.keywordConductors
dc.subject.keywordDiffusion.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleInfluence of thermally induced oxygen order on mobile ion dynamics in Gd_(2)(Ti_(0.65)Zr_(0.35))_(2)O_(7)
dc.typejournal article
dc.volume.number75
dcterms.references1) A. V. Chadwick, Nature London, 408, 925, 2000. 2) J. B. Goodenough, Nature London, 404, 821, 2000. 3) K. L. Ngai, J. Non-Cryst. Solids, 203, 232, 1996. 4) P. K. Moon, H. L. Tuller, Solid State Ionics, 28-30, 470, 1988. 5) J. Chen, J. Lian, L. M. Wang, R. C. Ewing, R. G. Wang, W. Pan, Phys. Rev. Lett., 88, 105901, 2002. 6) A. J. Burggraaf, T. van Dijk, M. J. Verkerk, Solid State Ionics, 5, 519, 1981. 7) M. Subramanian, G. Aravamudan, G. V. Subba Rao, Prog. Solid State Chem., 15, 55, 1983. 8) B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. E. Yeo, S. M. Haile, J. K. Stalick, J. D. Jorgensen, Solid State Ionics, 129, 111, 2000. 9) P. K. Moon, H. L. Tuller, in Solid State Ionics, edited by G. Nazri, R. A. Huggins, D. F. Shriver MRS Symposia Proceedings, No. 135: Materials Research Society, Pittsburgh, 1989, p. 149. 10) A. F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza, U. Amador, Solid State Sci., 7, 343, 2005. 11) J. Lian, J. Chen, L. M. Wang, R. C. Ewing, J. M. Farmer, L. A. Boatner, K. B. Helean, Phys. Rev. B, 68, 134107, 2003. 12) F. X. Zhang, B. Manoun, S. K. Saxena, C. S. Zha, Appl. Phys. Lett., 86, 181906, 2005. 13) K. J. Moreno, G. Mendoza-Suárez, A. F. Fuentes, J. García Barriocanal, C. León, J. Santamaría, Phys. Rev. B, 71, 132301, 2005. 14) K. J. Moreno, R. Silva-Rodrigo, A. F. Fuentes, J. Alloys Compd., 390, 230, 2005. 15) J. Rodríguez-Carvajal, Physica B, 19, 55, 1993. ---- See also a report in CPD of IUCr, Newsletter, 2001, 26, 12–19: available at http://www.iucr.org/iucrtop/comm/cpd/Newsletters. The program and manual can be found at http://wwwllb.cea.fr/fullweb/powder.htm. 16) S. García-Martín, M. A. Alario-Franco, H. Ehrenberg, J. Rodríguez-Carvajal, U. Amador, J. Am. Chem. Soc., 126, 3587, 2004. 17) J. I. Langford, Proceedings of the International Conference “Accuracy in Powder Diffraction II” (NIST, Gaithersburg, MD), 1992, NIST Special Publication, No. 846. 18) J. I. Langford, Defect and Microstructure Analysis by Diffraction, IUCr Monographs on Crystallography No. 10, edited by P. Snyder, F. Fiala, H. Bunge (Oxford University Press, Oxford), 1999, pp. 59–81. 19) R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32, 751, 1976. 20) N. J. Hess, B. D. Begg, S. D. Conradson, D. E. McCready, P. L. Gassman, W. J. Weber, J. Phys. Chem. B, 106, 4663, 2002. 21) M. Glerup, O. F. Nielsen, F. W. Poulsen, J. Solid State Chem., 160, 25, 2001. 22) A. K. Jonscher, Dielectric Relaxation in Solids, (Chelsea, London), 1983. 23) K. Funke, J. Non-Cryst. Solids, 172-174, 1215, 1994. 24) K. L. Ngai, K. Y. Tsang, Phys. Rev. E, 60, 4511, 1999. 25) K. L. Ngai, C. León, Phys. Rev. B, 60, 9396, 1999. 26) P. B. Macedo, C. T. Moynihan, R. Bose, Phys. Chem. Glasses, 13, 171, 1972. 27) R. Kohlrausch, Ann. Phys., 72, 353, 1847. 28) D. P. Almond, C. R. Bowen, Phys. Rev. Lett., 92, 157601, 2004. 29) K. L. Ngai, C. León, Phys. Rev. B, 66, 064308, 2002. 30) K. L. Ngai, C. León, J. Non-Cryst. Solids, 315, 214, 2003.
dspace.entity.typePublication
relation.isAuthorOfPublication75fafcfc-6c46-44ea-b87a-52152436d1f7
relation.isAuthorOfPublication213f0e33-39f1-4f27-a134-440d5d16a07c
relation.isAuthorOfPublication.latestForDiscovery75fafcfc-6c46-44ea-b87a-52152436d1f7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeonC48libre.pdf
Size:
164.69 KB
Format:
Adobe Portable Document Format

Collections