Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Artificial intelligence applied to ophthalmology and optometry: A citation network analysis

dc.contributor.authorMartínez Pérez, Clara
dc.contributor.authorÁlvarez Peregrina, Cristina
dc.contributor.authorVilla Collar, César
dc.contributor.authorSánchez Tena, Miguel Ángel
dc.date.accessioned2023-06-22T12:52:39Z
dc.date.available2023-06-22T12:52:39Z
dc.date.issued2022-09-21
dc.description.abstractPurpose: The objective of this study is to analyse co-authorship and co-citation networks of publications in the field of artificial intelligence in ophthalmology and optometry. As well as, identify the different areas of research and the most cited publication. Method: A search of publications was performed in the Web of Science database for the period from 1977 to December 2021, using the term “Artificial Intelligence AND (Ophthalmol* OR optometry)”. The analysis of the publication was carried out using the Citation Network Explorer, VOSviewer and CiteSpace software. Results: 1086 publications and 2348 citation networks were found. 2020 was the year with the highest number of publications, a total of 351 publications and 115 citation networks. The most cited publication was “Clinically applicable deep learning for diagnosis and referral in retinal disease” published by De Fauw et al. in 2018, with a citation index of 723. Through the clustering function, three groups were found that cover the main research areas in this field: retinal pathology, anterior segment and glaucoma. Conclusions: The citation network analysis offers an in-depth analysis of scientific publications and the adoption of new topics and fields of research. The results of an exhaustive analysis of citation networks in artificial intelligence in the field of ophthalmology and optometry are presented since the publication of the first article in 1977.
dc.description.departmentDepto. de Optometría y Visión
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77643
dc.identifier.doi10.1016/j.optom.2022.06.005
dc.identifier.issn1888-4296
dc.identifier.officialurlhttps://doi.org/10.1016/j.optom.2022.06.005
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S1888429622000401
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73282
dc.issue.number1
dc.journal.titleJournal of Optometry
dc.language.isoeng
dc.page.final590
dc.page.initial582
dc.publisherSpanish General Council of Optometrists
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu004.8:617.7
dc.subject.cdu0048:617.75
dc.subject.keywordVision
dc.subject.keywordCitation network
dc.subject.keywordArtificial intelligence
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmOftalmología
dc.subject.ucmÓptica y optometría
dc.subject.unesco1203.04 Inteligencia Artificial
dc.subject.unesco3201.09 Oftalmología
dc.subject.unesco2209 Óptica
dc.titleArtificial intelligence applied to ophthalmology and optometry: A citation network analysis
dc.typejournal article
dc.volume.number15
dspace.entity.typePublication
relation.isAuthorOfPublicationdd75532a-6964-4579-bbb1-671f827cc2d2
relation.isAuthorOfPublication1bbcfafa-1b33-4213-9a8d-2a1c633e8e85
relation.isAuthorOfPublication.latestForDiscoverydd75532a-6964-4579-bbb1-671f827cc2d2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S1888429622000401-main.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format

Collections