On continued fractions and the Sorgenfrey line.

dc.contributor.authorGallego Lupiáñez, Francisco
dc.date.accessioned2023-06-20T16:56:58Z
dc.date.available2023-06-20T16:56:58Z
dc.date.issued1990
dc.description.abstractWe define a modification of continued fractions such that the lexicographic order coincides with the linear order of real numbers. Using this representation, we obtain a new proof of the theorem which shows that the Sorgenfrey line is not totally paracompact.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16203
dc.identifier.issn0918-4732
dc.identifier.officialurlhttp://qagt.za.org/contributors
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57492
dc.issue.number2
dc.journal.titleQuestions and answers in general topology
dc.page.final465
dc.page.initial457
dc.publisherSymposium of General Topology
dc.rights.accessRightsmetadata only access
dc.subject.cdu515.1
dc.subject.cdu511
dc.subject.keywordTotal paracompactness
dc.subject.keywordContinued fractions
dc.subject.keywordSorgenfrey line
dc.subject.ucmTeoría de números
dc.subject.ucmTopología
dc.subject.unesco1205 Teoría de Números
dc.subject.unesco1210 Topología
dc.titleOn continued fractions and the Sorgenfrey line.
dc.typejournal article
dc.volume.number8
dspace.entity.typePublication
relation.isAuthorOfPublicationd690c2bd-762b-4bd2-a8ba-11c504ad15d5
relation.isAuthorOfPublication.latestForDiscoveryd690c2bd-762b-4bd2-a8ba-11c504ad15d5

Download

Collections