Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Doped gallium oxide nanowires for photonics

dc.book.titleOxide-based materials and devices III
dc.contributor.authorNogales Díaz, Emilio
dc.contributor.authorLópez, I.
dc.contributor.authorMéndez Martín, María Bianchi
dc.contributor.authorPiqueras De Noriega, Francisco Javier
dc.contributor.authorLorenz, K.
dc.contributor.authorAlves, E.
dc.contributor.authorGarcía, J.A.
dc.date.accessioned2023-06-20T05:45:43Z
dc.date.available2023-06-20T05:45:43Z
dc.date.issued2012
dc.description© 2012 SPIE. Conference on Oxide-Based Materials and Devices (3. 2012.San Francisco)
dc.description.abstractMonoclinic gallium oxide, beta-Ga_2O_3, is a transparent conducting oxide (TCO) that presents one of the widest band gaps among this family of materials. Its characteristics make it highly interesting for applications in UV - visible - IR optoelectronic and photonic devices. On the other hand, the morphology of nanowires made of this oxide presents specific advantages for light emitting nanodevices, waveguides and gas sensors. Control of doping of the nanostructures is of the utmost importance in order to tailor the behavior of these devices. In this work, the growth of the nanowires is based on the vapor-solid (VS) mechanism during thermal annealing treatment while the doping process was carried out in three different ways. In one of the cases, doping was obtained during the growth of the wires. A second method was based on thermal diffusion of the dopants after the growth of undoped nanowires, while the third method used ion implantation to introduce optically active ions into previously grown nanowires. The study of the influence of the different dopants on the luminescence properties of gallium oxide nanowires is presented. In particular, transition metals and rare earths such as Cr, Gd, Er or Eu were used as optically active dopants that allowed selection of the luminescence wavelength, spanning from the UV to the IR ranges. The benefits and drawbacks of the three different doping methods are analyzed. The waveguiding behavior of the doped nanowires has been studied by room temperature micro-photoluminescence.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/24024
dc.identifier.doi10.1117/12.907766
dc.identifier.isbn978-0-8194-8906-7
dc.identifier.officialurlhttp://projects.itn.pt/KLorenz/FCT2009/papers/2year/SPIE_Proc_2012_8263_82630B_Nogales.pdf
dc.identifier.relatedurlhttp://projects.itn.pt
dc.identifier.urihttps://hdl.handle.net/20.500.14352/45480
dc.issue.number8263
dc.journal.titleOxide-Based materials and Devices III
dc.language.isoeng
dc.publisherSpie-int soc optical engineering
dc.relation.ispartofseriesProceedings- Spie the International Society for Optical Engineering
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordBeta-Ga_2O_3
dc.subject.ucmFísica de materiales
dc.titleDoped gallium oxide nanowires for photonics
dc.typebook part
dcterms.references[1] Binet, L. and Gourier D., “Origin of the blue luminescence of β-Ga_2O_3”, J. Phys. Chem. Solids 59(8), 1241 (1998). [2] Song, Y. P. , Zhang, H. Z., Lin, C., Zhu, Y. W., Li, G. H., Yang, F. H. and Yu, D. P., “Luminescence emission originating from nitrogen doping of β-Ga2O3 nanowires” Phys. Rev. B 69, 075304 (2004). [3] Shimamura, K., Villora, E.G., Ujiie, T. and Aoki, K., “Excitation and photoluminescence of pure and Si-doped b-Ga_2O_3 single crystals”, Appl. Phys. Lett. 92, 201914 (2008). [4] Villora, E.G., Shimamura, K., Yoshikawa, Y., Ujiie, Y. and Aoki, K., “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping”, Appl. Phys. Lett. 92, 202120 (2008). [5] Nogales, E., Mendez, B. and Piqueras, J., “Cathodoluminescence from beta-Ga2O3 nanowires”, Appl. Phys. Lett. 86, 113112 (2005). [6] Arnold, S. P., Prokes, S. M., Perkins, F. K., and Zaghloul M. E., “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor”, Appl. Phys. Lett. 95, 103102 (2009). [7] Tippins, H. H., “Optical absorption and photoconductivity in band edge of beta-Ga_2O3”, Phys. Rev. 140, A316 (1965). [8] Al-Kuhaili, M. F., Durrani, S. M. A. and Khawaja, E. E., “Optical properties of gallium oxide films deposited by electron-beam evaporation”, Appl. Phys. Lett. 83, 4533 (2003). [9] Barth, S., Hernandez-Ramirez, F., Holmes, J. D. and Romano-Rodriguez, A., “Synthesis and applications of one-dimensional semiconductors”, Prog. Materials Sci. 55, 563 (2010). [10] Law, M., Sirbuly, D. J., Johnson, J. C., Goldberger, J., Saykally, R. J. and Yang, P., “Nanoribbon waveguides for subwavelength photonics integration”, Science 305, 1269 (2004). [11] Nogales, E., Garcia, J.A., Mendez, B. and Piqueras, J., “Doped gallium oxide nanowires with waveguiding behavior”, Appl. Phys. Lett. 91, 133108 (2007).
dspace.entity.typePublication
relation.isAuthorOfPublicationf65096c2-6796-43bf-a661-9e2079b73d1c
relation.isAuthorOfPublication465cfd5b-6dd4-4a48-a6e3-160df06f7046
relation.isAuthorOfPublication68dabfe9-5aec-4207-bf8a-0851f2e37e2c
relation.isAuthorOfPublication.latestForDiscoveryf65096c2-6796-43bf-a661-9e2079b73d1c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MendezBianchi06.pdf
Size:
943.53 KB
Format:
Adobe Portable Document Format