Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Electron scattering on disordered double-barrier GaAs-AlxGa1-xAs heterostructures

dc.contributor.authorGómez, I.
dc.contributor.authorDíez Alcántara, Eduardo
dc.contributor.authorDomínguez-Adame Acosta, Francisco
dc.contributor.authorOrellana, P.
dc.date.accessioned2023-06-20T10:48:28Z
dc.date.available2023-06-20T10:48:28Z
dc.date.issued2003-06
dc.description© 2003 Elsevier Science B.V. All rights reserved. The authors want to thank V. A. Malyshev for the critical reading of the manuscript. Work in Madrid was supported by DGI-MCyT (Project MAT2000-0734) and CAM (Project 07N/0075/2001). P. Orellana would like to thank Milenio ICM P99-135-F and Cátedra Presidencial de Ciencias for financial support.
dc.description.abstractWe present a novel model to calculate vertical transport properties such as conductance and current in unintentionally disordered double-barrier GaAs-AlxGa1-xAs heterostructures. The source of disorder comes from interface roughness at the heterojunctions (lateral disorder) as well as spatial inhomogeneities of the Al mole fraction in the barriers (compositional disorder). Both lateral and compositional disorder break translational symmetry along the lateral direction and therefore electrons can be scattered off the growth direction. The model correctly describes channel mixing due to these elastic scattering events. In particular, for realistic degree of disorder, we have found that the effects of compositional disorder on transport properties are negligible as compared to the effects due to lateral disorder.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGI-MCyT
dc.description.sponsorshipCAM
dc.description.sponsorshipMilenio ICM
dc.description.sponsorshipCátedra Presidencial de Ciencias
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/27493
dc.identifier.doi10.1016/S1386-9477(02)01120-7
dc.identifier.issn1386-9477
dc.identifier.officialurlhttp://dx.doi.org/10.1016/S1386-9477(02)01120-7
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.relatedurlhttp://arxiv.org/abs/cond-mat/0112216
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51259
dc.issue.number4
dc.journal.titlePhysica E: Low-dimensional Systems and Nanostructures
dc.language.isoeng
dc.page.final382
dc.page.initial372
dc.publisherElsevier Science BV
dc.relation.projectIDMAT2000-0734
dc.relation.projectIDProject 07N/0075/2001
dc.relation.projectIDP99-135-F
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordInterface Roughness
dc.subject.keywordModel
dc.subject.keywordSuperlattices
dc.subject.keywordConduction
dc.subject.keywordCoherent
dc.subject.ucmFísica de materiales
dc.titleElectron scattering on disordered double-barrier GaAs-AlxGa1-xAs heterostructures
dc.typejournal article
dc.volume.number18
dcterms.references1. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, Appl. Phys. Lett. 43, 588 (1984). 2. B. Ricco and M. Ya. Azbel, Phys. Rev. B 29, 1970 (1984). 3. N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys. Rev. Lett. 61, 1396 (1988). 4. W. Cai, T. F. Zheng, P. H. Hu, B. Yudanin, and M. Lax, Phys. Rev. Lett. 63, 418 (1989). 5. V. A. Chitta, C. Kutter, R. E. M. de Bekker, J. C. Maan, S. J. Hawksworth, J. M. Chamberlain, M. Henini, and G. Hill, J. Phys.: Condens. Matter 6, 3945 (1994). 6. J. Iñarrea, G. Platero, and C. Tejedor, Semicond. Sci. Technol. 9, 515 (1994). 7. A. Levy Yeyati, F. Flores, and E. V. Anda, Phys. Rev. B 47, 10 543 (1993). 8. P. Orellana and F. Claro, Appl. Phys. Lett. 75, 1643 (1999). 9. P. Orellana, F. Claro, and E. Anda, Phys. Rev. B 62, 9959 (2000). 10. U. Penner, H. R¨ucker, and I. N. Yassievich, Semicond. Sci. Technol. 13, 709 (1998). 11. V. D. Freilikher and S. A. Gradeskul, Prog. Opt. 30, 137 (1991). 12. L. E. Henrickson, K. Hirakawa, J. Frey, and T. Ikoma, J. Appl. Phys. 71, 3883 (1992). 13. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986); M. Büttiker, IBM J. Res. Dev. 32, 63 (1988); M. B¨uttiker, IBM J. Res. Dev. 32, 317 (1988). 14. D. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981). 15. R. M. Feenstra, D. A. Collins, D. Z. -Y. Ting, M. W. Wang, and T. C. McGill, Phys. Rev. Lett. 72, 2749 (1994). 16. H. W. Salemik, O. Albrektsen, and P. Koenraad, Phys. Rev. B 45, 6946 (1992)
dspace.entity.typePublication
relation.isAuthorOfPublicationbc6a5675-68c7-4ee0-b20c-8560937c1c25
relation.isAuthorOfPublicationdbc02e39-958d-4885-acfb-131220e221ba
relation.isAuthorOfPublication.latestForDiscoverydbc02e39-958d-4885-acfb-131220e221ba

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dguez-Adame65preprint.pdf
Size:
216.27 KB
Format:
Adobe Portable Document Format

Collections