Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The one-dimensional nonlinear heat-equation with absorption: regularity of solutions and interfaces

dc.contributor.authorHerrero, Miguel A.
dc.contributor.authorVázquez, Juan Luis
dc.date.accessioned2023-06-20T17:06:45Z
dc.date.available2023-06-20T17:06:45Z
dc.date.issued1987-01
dc.description.abstractWe consider the equation ut=(Um)xx-λun with m>1, λ>0, n≥m as a model for heat diffusion with absorption. Hence we assume that u≥0 for xЄR, t≥0. We study the regularity of the solution to the Cauchy problem for this degenerate parabolic equation. When the initial datum uo(X)is positive only in a part of the space R, we also study the regularity of the free boundaries that appear. The asymptotic behavior of solutions and free boundaries is also discussed.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.sponsorshipSFPI, Ministerio de Educacibn y Ciencia
dc.description.sponsorshipFulbright award
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17602
dc.identifier.doi10.1137/0518011
dc.identifier.issn0036-1410
dc.identifier.officialurlhttp://epubs.siam.org/simax/resource/1/sjmaah/v18/i1/p149_s1?isAuthorized=no
dc.identifier.relatedurlhttp://epubs.siam.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57789
dc.issue.number1
dc.journal.titleSiam Journal on Mathematical Analysis
dc.language.isoeng
dc.page.final167
dc.page.initial149
dc.publisherSociety for Industrial and Applied Mathematics
dc.rights.accessRightsrestricted access
dc.subject.cdu517.956.4
dc.subject.cdu536.2
dc.subject.keywordNonlinear diffusion with absorption
dc.subject.keywordregularity
dc.subject.keywordinterfaces or free boundaries
dc.subject.keywordwaiting time
dc.subject.keywordasymptotic behavior
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleThe one-dimensional nonlinear heat-equation with absorption: regularity of solutions and interfaces
dc.typejournal article
dc.volume.number18
dcterms.referencesD. G. ARONSON, Regularity properties of flows through porous media, SIAM J. Appl. Math., 17 (1969), pp. 461-467. D. G. ARONSON, Regularity properties of flows through porous media: the interface, Arch. Rat. Mech. Anal., 37 (1970), pp. 1-10. D. G. ARONSON AND PH. BÉNILAN, Régularité des solutions de l’équation des milieux poreux dans Rn, C. R. Acad. Sci. Paris, 288 (1979), pp. 103-105. D. G. ARONSON, L. C. CAFFARELLI AND S. KAMIN, How an initially stationary interface begins to move in porous medium flow, this Journal, 14 (1983), pp. 639-658. D. G. ARONSON, L. A. CAFFARELLI AND J. L. VÁZQUEZ, Interfaces with a corner point in one-dimensional porous medium flow, Comm. Pure Applied Math., 38 (1985), pp. 375-404. G. I. BARENBLATT, On some unsteady motions of a liquid or a gas in a porous medium, Prikl. Mat. Mekh., 16 (1952), pp. 67-78 (Russian). M. BERTSCH, A class of degenerate diffusion equations with a singular nonlinear term, Nonlinear Analysis, TMA 7 (1983), pp. 117-127. M. BERTSCH, R. KERSNER AND L. A. PELETIER, Sur le comportement de la frontière libre dans une équation en théorie de la filtration, C. R. Acad. Sc. Paris, 295 (1982), pp. 63-66. M. BERTSCH, R. KERSNER AND L. A. PELETIER, Positivity versus localization in degenerate diffusion equations, to appear. L. A. CAFFARELLI AND A. FRIEDMAN, Regularity of the free boundary for the one-dimensional flow of a gas in a porous medium, Amer. J. Math., 101 (1979), pp. 1193-1218. B. H. GILDING, Hölder continuity of solutions of parabolic equations, J. London Math. Soc., 13 (1976), pp. 103-106. M. A. HERRERO, On the growth of the interfaces of a nonlinear degenerate parabolic equation, in Contributions to Nonlinear P.D.E., C. Bardos et al., eds., Pitman Research Notes, no. 86 (1983), pp. 218-224. A. M. IL’IN, A. S. KALASHNIKOV AND O. A. OLEINIK, Second order linear equations of parabolic type, Russian Math. Surveys, 17 (1962), pp. 1-143. A. S. KALASHNIKOV, On the occurrence of singularities in the solutions of the non-steady seepage equation, Zh. Vychisl. Mat. i Mat. Fiz., 7 (1967), pp. 440-444. A. S. KALASHNIKOV, The propagation of disturbances in problems of nonlinar heat conduction with absorption, Zh. Vychisl. Mat. i Mat. Fiz., 14 (4) (1974), pp. 891-905. A. S. KALASHNIKOV, On the differential properties of generalized solutions of nonstationary filtration type, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 29 (1974), pp. 62-68. R. KERSNER, On the behavior when t→∞ of generalized solutions of a degenerate parabolic equation, Acta Math. Acad. Sci. Hungaricae, 34 (1979), pp. 157-163 (Russian). R. KERSNER, Degenerate parabolic equations with general nonlinearities, Nonlinear Analysis TMA 4 (6) (1980), pp. 1043-1062. R. KERSNER, The behavior of temperature fronts in media with nonlinear thermal conductivity under absorption, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 33 (5) (1978), pp. 44-51. B. F. KNERR, The porous medium equation in one dimension, Trans. Amer. Math. Soc., 234 (1977), pp. 381-415. B. F. KNERR, The behavior of the support of solutions of the equation of nonlinear heat conduction with absorption in one dimension, Trans. Amer. Math. Soc., 249 (1979), pp. 409-424. S. N. KRUZHKOV, Results concerning the nature of the continuity of solutions of parabolic equations and some of their applications, Matematicheskie Zametki, 6 (1969), pp. 97-108. A. LACEY, J. R. OCKENDON AND A. TAYLER, Waiting time solutions of a nonlinear diffusion equation, SIAM J. Appl. Math., 42 (1982), pp. 1252-1264. O. A. LADYZHENSKAYA, V. A. SOLONNIKOV AND N. N. URAL’CEVA, Linear and quasilinear equations of parabolic type, AMS Translations, 1969. L. K. MARTINSON AND K. B. PAVLOV, Thermal localization in nonlinear heat conduction, Zh. Vychisl. Mat. i Mat. Fiz., 12 (4) (1972), pp. 1048-1053. O. A. OLEǏNIK AND A. S. KALASHNIKOV AND CHZOU Y-L, The Cauchy problem and boundary value problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk. SSSR. Ser. Mat., 22 (1958), pp. 667-704. (In Russian.) L. A. PELETIER, The porous medium equation, in Application of Nonlinear Analysis in the Physical Sciences, H. Amman et al., eds., Pitman, New York (1981), pp. 229-241. J. L. VÁZQUEZ, Asymptotic behavior and propagation properties of the one-dimensional flow of gas in a porous medium, Trans. Amer. Math. Soc., 277 (1983), pp. 507-527. J. L. VÁZQUEZ, Behavior of the velocity of one-dimensional flow in porous media, Trans. Amer. Math. Soc., 286 (1984), pp. 787-802. J. L. VÁZQUEZ, The interface of one-dimensional flows in porous media, Trans. Amer. Math. Soc., 285 (1984), pp. 717-737. L. VÉRON, Effects régularisants de semigroupes non-linéaires dans les espaces de Banach, Ann. Fac. Sci. Toulouse, 1 (1979), pp. 171-200. Y. B. ZELDOVICH AND Y. P. RAIZER, Physics of shock waves and high-temperature hydrodynamic phenomena, Academic Press, New York, 1966
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Herrero59.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format

Collections