Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Weakly pseudocompact subsets of nuclear groups

dc.contributor.authorMartín Peinador, Elena
dc.contributor.authorBanaszczyk, W
dc.date.accessioned2023-06-20T16:59:40Z
dc.date.available2023-06-20T16:59:40Z
dc.date.issued1999-05-17
dc.description.abstractLet G be an Abelian topological group and G(+) the group G endowed with the weak topology induced by continuous characters. We say that G respects compactness (pseudocompactness, countable compactness, functional boundedness) if G and G+ have the same compact (pseudocompact, countably compact, functionally bounded) sets. The well-known theorem of Glicksberg that LCA groups respect compactness was extended by Trigos-Arrieta to pseudocompactness and functional boundedness. In this paper we generalize these results to arbitrary nuclear groups, a class of Abelian topological groups which contains LCA groups and nuclear locally convex spaces and is closed with respect to subgroups, separated quotients and arbitrary products.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipKBN
dc.description.sponsorshipD.G.I.C.Y.T.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16691
dc.identifier.doi10.1016/S0022-4049(98)00034-6
dc.identifier.issn0022-4049
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S0022404998000346
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57589
dc.issue.number2
dc.journal.titleJournal of Pure and Applied Algebra
dc.language.isoeng
dc.page.final106
dc.page.initial99
dc.publisherElsevier Science B.V. (North-Holland)
dc.relation.projectID2P 301 021 05.
dc.relation.projectIDBE91-031.
dc.rights.accessRightsrestricted access
dc.subject.cdu515.12
dc.subject.keywordlocally compact Abelian group
dc.subject.keywordnuclear groups
dc.subject.keywordnuclear locally convex spaces
dc.subject.keywordcompactness
dc.subject.keywordcountable compactness
dc.subject.keywordpseudocompactness
dc.subject.keywordfunctional boundedness
dc.subject.keywordAbelian groups
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titleWeakly pseudocompact subsets of nuclear groups
dc.typejournal article
dc.volume.number138
dcterms.referencesW. Banaszczyk. Additive subgroups of topological vector spaces. Lecture Notes in Mathematics, vol. 1466, Springer, Berlin (1991) W. Banaszczyk. Summable families in nuclear groups. Studia Math., 105 (1993), pp. 272–282 W. Banaszczyk, E. Martín-Peinador. The Glicksberg theorem on weakly compact sets for nuclear groups, Papers on General Topology and Applications. Ann. NY. Acad. Sci., 788 (1996), pp. 34–39 E. Hewitt, K.A. Ross. Abstract Harmonic Analysis, vol. ISpringer, Berlin (1963) D. Remus, F.J. Trigos-Arrieta. Abelian groups which satisfy Pontryagin duality need not respect compactness Proc. Amer. Math. Soc., 117 (1993), pp. 1195–1200 F.J. Trigos-Arrieta. Continuity, boundedness, connectedness and the Lindelöf property for topological groups J. Pure Appl. Algebra, 70 (1991), pp. 199–210 F.J. Trigos-Arrieta. Pseudocompactness on groups. Lecture Notes in Pure and Applied Mathematics, vol. 134Dekker, New York (1991), pp. 369–378 E. van Douwen. The maximal totally bounded group topology on G and the biggest minimal G-space, for Abelian groups G. Topology Appl., 34 (1990), pp. 69–91
dspace.entity.typePublication
relation.isAuthorOfPublication0074400c-5caa-43fa-9c45-61c4b6f02093
relation.isAuthorOfPublication.latestForDiscovery0074400c-5caa-43fa-9c45-61c4b6f02093

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MPeina08.pdf
Size:
508.59 KB
Format:
Adobe Portable Document Format

Collections