Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Late Famatinian (440–410 Ma) overprint of Grenvillian metamorphism in Grt-St schists from the Sierra de Maz (Argentina): Phase equilibrium modelling, geochronology, and tectonic significance

dc.contributor.authorVerdecchia, Sebastián
dc.contributor.authorRamacciotti, Carlos
dc.contributor.authorCasquet Martín, César
dc.contributor.authorBaldo, Edgardo G.
dc.contributor.authorMurra, Juan Alberto
dc.contributor.authorPankhurst, R.J.
dc.date.accessioned2023-06-22T12:43:34Z
dc.date.available2023-06-22T12:43:34Z
dc.date.issued2022-10
dc.description.abstractThe analysis of major and trace elements in zoned minerals is useful for deciphering parts of the tectonothermal evolution of polymetamorphic tarrain. We applied this approach to the Maz Metasedimentary Series in Western Sierras Pampeanas of Argentina, where polymetamorphism resulted in the overprinting of a Grenvillian basement (the Maz Complex) during the pervasive Rinconada tectonic phase of the Famatinian orogeny. The older metamorphism (M1) is assigned to the youngest Grenvillian metamorphic event recognized in this basement at c. 1035 Ma, whereas the Rinconada metamorphism (M2) was Silurian to early Devonian, essentially between 440 and 410 Ma. The latter resulted from oceanward migration of the orogenic front relative to earlier late Cambrian to Ordovician (490–470 Ma) tectonic phases of the Famatinian orogeny. The M1 and M2 metamorphic events have been recognized in a staurolite-garnet schist from the Maz Metasedimentary Series. Most metamorphic minerals from this rock were formed during the M2 event which was of the Barrovian type (±kyanite). Part of the metamorphic P–T evolution is recorded in the complex compositional zoning of garnet porphyroblasts. Three types of garnet were identified based on texture and chemistry, including trace elements (REEs). Phase equilibrium analysis, compositional isopleth, and multi-equilibrium thermobarometry were applied in order to establish the P–T history. M1 is represented by preservation of Grt1 ± Kfs ± Sil, with peak P–T condition of 790°C and 5.2 kbar, that is, granulite facies. This early metamorphic event was related to a deformational D1 episode represented by a relict S1 foliation. The latter is preserved as aligned inclusions in staurolite porphyroblasts and as relics of an older crenulated foliation in microlithons from the matrix. M2 followed a clockwise P–T path with three mineral growth stages. The earliest occurred at ~585°C and ~8.7 kbar and is represented by Grt2 ± St1 ± Bt1 + Qz. Grt2 was partially coeval with growth of St1, which was stable at ~625°C and 9.0 kbar. Grt2 + St1 are syn-kinematic to the main S2 foliation (D2 episode). Subsequently, decompression (D3) started as St2 (+ Bt2 + Ms1 + Qz + Pl) crystallized, and garnet was partially consumed at ~612–620°C and ~7.3–7.7 kbar. St3 + Grt3 crystallized at ~608°C and ~6.8 kbar at the end of D3. Increasing P–T conditions during the earlier M2 growth stage suggest burial of the Maz Metasedimentary Series, probably linked to tectonic thickening by underthrusting (tectonic phase D2). Peak metamorphic conditions were attained during thrust stacking. The tectonic phase (D2) was responsible for the main S2 foliation, which was penetrative at all scales. The nearly isothermal decompression path is compatible with exhumation, probably resulting from extension along discrete shear zones (tectonic phase D3) that produced a mylonitic foliation S3.
dc.description.departmentDepto. de Mineralogía y Petrología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.sponsorshipCICTERRA
dc.description.sponsorshipCONICET-UNC
dc.description.sponsorshipMinisterio de Econmía y Competitividad
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/77073
dc.identifier.doi10.1111/jmg.12677
dc.identifier.issn0263-4929
dc.identifier.officialurlhttps://doi.org/10.1111/jmg.12677
dc.identifier.urihttps://hdl.handle.net/20.500.14352/73099
dc.issue.number8
dc.journal.titleJournal of metamorphic geology
dc.language.isoeng
dc.page.final1381
dc.page.initial1347
dc.publisherBlackwell Science Inc.
dc.relation.projectIDPIP-2015 11220150100901CO
dc.relation.projectIDONCYT PICT 2017–0619
dc.relation.projectIDSECyT 2018–2020
dc.relation.projectIDCGL2016-76439-P
dc.rights.accessRightsrestricted access
dc.subject.cdu550.43(82)
dc.subject.keywordgarnet zonation
dc.subject.keywordmonazite geochronology
dc.subject.keywordpolymetamorphism
dc.subject.keywordRinconada orogenic phase
dc.subject.keywordWestern Sierras Pampeanas
dc.subject.ucmGeodinámica
dc.subject.ucmPetrología
dc.subject.unesco2507 Geofísica
dc.titleLate Famatinian (440–410 Ma) overprint of Grenvillian metamorphism in Grt-St schists from the Sierra de Maz (Argentina): Phase equilibrium modelling, geochronology, and tectonic significance
dc.typejournal article
dc.volume.number40
dspace.entity.typePublication
relation.isAuthorOfPublicationa4fea134-2fb2-4157-9dd1-a3d6002ba005
relation.isAuthorOfPublication.latestForDiscoverya4fea134-2fb2-4157-9dd1-a3d6002ba005

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Late Famatinian 440 410 Ma overprint of Grenvillian metamorphism in (2).pdf
Size:
134.51 MB
Format:
Adobe Portable Document Format

Collections