Systems of second-order linear ODE’s with constant coefficients and their symmetries. II. The case of non-diagonal coefficient matrices.

dc.contributor.authorCampoamor Stursberg, Otto-Rudwig
dc.date.accessioned2023-06-20T03:31:56Z
dc.date.available2023-06-20T03:31:56Z
dc.date.issued2012
dc.description.abstractWe complete the analysis of the symmetry algebra L for systems of n second-order linear ODEs with constant real coefficients, by studying the case of coefficient matrices having a non-diagonal Jordan canonical form. We also classify the Levi factor (maximal semisimple subalgebra) of L, showing that it is completely determined by the Jordan form. A universal formula for the dimension of the symmetry algebra of such systems is given. As application, the case n = 5 is analyzed.en
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20787
dc.identifier.doi10.1016/j.cnsns.2011.08.002
dc.identifier.issn1007-5704
dc.identifier.officialurlhttps//doi.org/10.1016/j.cnsns.2011.08.002
dc.identifier.relatedurlhttp://www.sciencedirect.com/science/article/pii/S100757041100428X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43748
dc.issue.number3
dc.journal.titleCommunications in Nonlinear Science and Numerical Simulation
dc.language.isoeng
dc.page.final1193
dc.page.initial1178
dc.publisherElsevier
dc.relation.projectIDMTM2010-18556
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordLie group method
dc.subject.keywordPoint symmetry
dc.subject.keywordLie algebra
dc.subject.keywordLevi factor
dc.subject.keywordLinearization
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleSystems of second-order linear ODE’s with constant coefficients and their symmetries. II. The case of non-diagonal coefficient matrices.en
dc.typejournal article
dc.volume.number17
dspace.entity.typePublication
relation.isAuthorOfPublication72801982-9f3c-4db0-b765-6e7b4aa2221b
relation.isAuthorOfPublication.latestForDiscovery72801982-9f3c-4db0-b765-6e7b4aa2221b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Campoamor-Systems.pdf
Size:
340.92 KB
Format:
Adobe Portable Document Format

Collections