Observation of pulsed gamma-rays above 25 GeV from the Crab Pulsar with MAGIC
dc.contributor.author | Antoranz Canales, Pedro | |
dc.contributor.author | Barrio Uña, Juan Abel | |
dc.contributor.author | Contreras González, José Luis | |
dc.contributor.author | Fonseca González, María Victoria | |
dc.contributor.author | Miranda Pantoja, José Miguel | |
dc.contributor.author | Nieto Castaño, Daniel | |
dc.date.accessioned | 2023-06-20T10:37:24Z | |
dc.date.available | 2023-06-20T10:37:24Z | |
dc.date.issued | 2008-11-21 | |
dc.description | © Science. We thank the electronics division at the Max-Planck-Insitut, Munich, for their work in developing and producing the analog sum trigger system, especially O. Reimann, R. Maier, S. Tran, and T. Dettlaff. We also thank L. Stodolsky for comments. We acknowledge the Instituto de Astrofisica for providing all infrastructure on the Roque de los Muchachos in La Palma. The support of the German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie and Max-Planck-Gesellschaft, the Italian INFN and INAF, the Swiss Schweizerische Nationalfonds, and Spanish Ministerio de Ciencia e Innovacion is acknowledged. This work was also supported by ETH research grant TH 34/043, by the Polish Ministertwo Nauki i Szkolnictwa Wyzszego grant N N203 390834, and by the Young Investigators Program of the Helmholtz Gemeinschaft. | |
dc.description.abstract | One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high- end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 giga-electron volts. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 giga-electron volts, revealing a relatively high cutoff energy in the phase- averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar- cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot- gap scenario. | |
dc.description.department | Depto. de Estructura de la Materia, Física Térmica y Electrónica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie | |
dc.description.sponsorship | Max-Planck-Gesellschaft | |
dc.description.sponsorship | Italian INFN and INAF | |
dc.description.sponsorship | Swiss Schweizerische Nationalfonds | |
dc.description.sponsorship | Spanish Ministerio de Ciencia e Innovacion | |
dc.description.sponsorship | ETH | |
dc.description.sponsorship | Polish Ministertwo Nauki i Szkolnictwa Wyzszego | |
dc.description.sponsorship | Young Investigators Program of the Helmholtz Gemeinschaft | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/23066 | |
dc.identifier.doi | 10.1126/science.1164718 | |
dc.identifier.issn | 0036-8075 | |
dc.identifier.officialurl | http://dx.doi.org/10.1126/science.1164718 | |
dc.identifier.relatedurl | http://www.sciencemag.org | |
dc.identifier.relatedurl | http://arxiv.org/abs/0809.2998 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/50806 | |
dc.issue.number | 5905 | |
dc.journal.title | Science | |
dc.language.iso | eng | |
dc.page.final | 1224 | |
dc.page.initial | 1221 | |
dc.publisher | Amer Assoc Advancement Science | |
dc.relation.projectID | TH 34/043 | |
dc.relation.projectID | N N203 390834 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 537 | |
dc.subject.cdu | 539.1 | |
dc.subject.keyword | Outer Magnetosphere | |
dc.subject.keyword | Slot Gaps | |
dc.subject.keyword | Emission | |
dc.subject.keyword | Radiation | |
dc.subject.keyword | TEV | |
dc.subject.keyword | Telescope | |
dc.subject.keyword | Search | |
dc.subject.keyword | Acceleration | |
dc.subject.keyword | Nebula. | |
dc.subject.ucm | Electrónica (Física) | |
dc.subject.ucm | Electricidad | |
dc.subject.ucm | Física nuclear | |
dc.subject.unesco | 2202.03 Electricidad | |
dc.subject.unesco | 2207 Física Atómica y Nuclear | |
dc.title | Observation of pulsed gamma-rays above 25 GeV from the Crab Pulsar with MAGIC | |
dc.type | journal article | |
dc.volume.number | 322 | |
dcterms.references | 1. M. A. Ruderman, P. G. Sutherland, Astrophys. J. 196, 51(1975). 2. J. K. Daugherty, A. K. Harding, Astrophys. J. 252, 337 (1982). 3. M. G. Baring, Adv. Space Res. 33, 552 (2004). 4. J. Arons, E. T. Scharlemann, Astrophys. J. 231, 854 (1979). 5. A.G.Muslimov, A. K.Harding, Astrophys. J. 606, 1143 (2004). 6. A. K. Harding, J. V. Stern, J. Dyks, F. Frackowiak, Astrophys. J. 680, 1378 (2008). 7. K. S. Cheng, C. Ho, M. Ruderman, Astrophys. J. 300, 500(1986). 8. K. Hirotani, arXiv:0809.1283, (2008). 9. A. P. S. Tang, J. Takata, J. Jia, K. S. Cheng, Astrophys. J. 676, 562 (2008). 10. g-rays induce particle air showers in the atmosphere that emit Cherenkov light. The detection of this light allows measuring the energy and the direction of the incident g-ray. 11. P. Chadwick et al., Astropart. Phys. 9, 131 (1998). 12. P. G. Edwards et al., Astron. Astrophys. 291, 468 (1994). 13. F. Aharonian et al., Astrophys. J. 614, 897 (2004). 14. M. de Naurois et al., Astrophys. J. 566, 343 (2002). 15. R. W. Lessard et al., Astrophys. J. 531, 942 (2000). 16. F. Aharonian et al., Astron. Astrophys. 466, 543 (2007). 17. L. Kuiper et al., Astron. Astrophys. 378, 918 (2001). 18. See the MAGIC telescope Web site; http://wwwmagic. mppmu.mpg.de. 19. A. N. Otte, thesis, Technical University, Munich (2007); available online at http://mediatum2.ub.tum.de/doc/ 620881/document.pdf. 20. J. Albert et al., Astrophys. J. 674, 1037 (2008). 21. The threshold of a Cherenkov telescope is usually defined as the peak in the energy distribution of triggered g-ray events for a g-ray source with an E−2.6 power-law photon energy spectrum. 22. A. G. Lyne, R. S. Pritchard, F. Smith, Mon. Not. R. Astron. Soc. 265, 1003 (1993). 23. R. W. Romani, Astrophys. J. 470, 469 (1996). 24. P. Goldreich, W. H. Julian, Astrophys. J. 157, 869 (1969). 25. Data provided by EGRET; ftp://legacy.gsfc.nasa.gov/compton/data/egret/. 26. F. Lucarelli et al., Nucl. Instr. Meth. A 589, 415 (2008). 27. A. K. Harding, private communication.Investigators Program of the Helmholtz Gemeinschaft. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 6bc87e5f-9b77-4982-b112-0d4f8aa128d0 | |
relation.isAuthorOfPublication | 11e5fd8b-1a86-4f8d-85c6-135541232be4 | |
relation.isAuthorOfPublication | 6a14529e-a65e-4709-9bc1-61f9429841c1 | |
relation.isAuthorOfPublication | 9f2c0e34-0edd-497a-bbd0-fbd9d348e85c | |
relation.isAuthorOfPublication | 328f9716-2012-44f9-aacc-ef8d48782a77 | |
relation.isAuthorOfPublication | 60928160-a862-4814-a08f-4d80c6a1cdab | |
relation.isAuthorOfPublication.latestForDiscovery | 6bc87e5f-9b77-4982-b112-0d4f8aa128d0 |
Download
Original bundle
1 - 1 of 1