Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Modal iterative estimation in linear models with unimodal errors and non-grouped and grouped data collected from different sources

dc.contributor.authorAnido, Carmen
dc.contributor.authorValdés Sánchez, Teófilo
dc.contributor.authorRivero Rodríguez, Carlos
dc.date.accessioned2023-06-20T18:41:40Z
dc.date.available2023-06-20T18:41:40Z
dc.date.issued2000
dc.description.abstractIn this paper we introduce an iterative estimation procedure based on conditional modes suitable to fit linear models when errors are known to be unimodal and, moreover, the dependent data stem from different sources and, consequently, may be either non-grouped or grouped with different classification criteria. The procedure requires, at each step, the imputation of the exact values of the grouped data and runs by means of a process that is similar to the EM algorithm with normal errors. The expectation step has been substituted with a mode step that avoids awkward integration with general errors and, in addition, we have substituted the maximisation step with a natural one which only coincides with it when the error distribution is normal. Notwithstanding the former modifications, we have proved that, on the one hand, the iterative estimating algorithm converges to a point which is unique and non-dependent on the starting values and, on the other hand, our final estimate, being an M-estimator, may enjoy good stochastic asymptotic properties such as consistency, boundness in L-2, and limit normality
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinistry of Education and Culture, Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20229
dc.identifier.doi10.1007/BF02595742
dc.identifier.issn1133-0686
dc.identifier.officialurlhttp://link.springer.com/content/pdf/10.1007%2FBF02595742
dc.identifier.relatedurlhttp://www.springer.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58327
dc.issue.number2
dc.journal.titleTest
dc.language.isoeng
dc.page.final416
dc.page.initial393
dc.publisherSpringer
dc.relation.projectIDSEC99-0402
dc.rights.accessRightsrestricted access
dc.subject.cdu519.2
dc.subject.keywordCensored-data
dc.subject.keywordmaximum-likelihood
dc.subject.keywordem algorithm
dc.subject.keywordregression
dc.subject.keywordasymptotic distributions
dc.subject.keywordconsistency
dc.subject.keywordconvergence rate
dc.subject.keywordgrouped data
dc.subject.keywordimputation
dc.subject.keyworditerative estimation
dc.subject.keywordlinear models
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleModal iterative estimation in linear models with unimodal errors and non-grouped and grouped data collected from different sources
dc.typejournal article
dc.volume.number9
dspace.entity.typePublication
relation.isAuthorOfPublication57155156-5c76-4da2-9777-5ab79884445c
relation.isAuthorOfPublication.latestForDiscovery57155156-5c76-4da2-9777-5ab79884445c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Teofilo12springer.pdf
Size:
915.92 KB
Format:
Adobe Portable Document Format

Collections