Groups of symmetric crosscap number less than or equal to 17
dc.contributor.author | Bacelo Polo, Adrián | |
dc.date.accessioned | 2023-06-17T12:45:20Z | |
dc.date.available | 2023-06-17T12:45:20Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Every finite group G acts on some non-orientable unbordered surfaces. The minimal topological genus of those surfaces is called the symmetric crosscap number of G. It is known that 3 is not the symmetric crosscap number of any group but it remains unknown whether there are other such values, called gaps. In this paper we obtain the groups with symmetric crosscap number less than or equal to 17. Also, we obtain six infinite families with symmetric crosscap number of the form 12k + 3. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación | |
dc.description.sponsorship | Universidad Complutense de Madrid | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/76832 | |
dc.identifier.doi | 10.26493/1855-3974.1341.5a3 | |
dc.identifier.issn | 1855-3974 | |
dc.identifier.officialurl | https://doi.org/10.26493/1855-3974.1341.5a3 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/12900 | |
dc.journal.title | Ars mathematica contemporanea | |
dc.language.iso | eng | |
dc.page.final | 190 | |
dc.page.initial | 173 | |
dc.publisher | University of Primorska | |
dc.relation.projectID | MTM2014-55565 | |
dc.relation.projectID | UCM910444 | |
dc.rights | Atribución 3.0 España | |
dc.rights.accessRights | open access | |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/es/ | |
dc.subject.cdu | 512 | |
dc.subject.cdu | 512.54 | |
dc.subject.keyword | Symmetric crosscap number | |
dc.subject.keyword | Klein surfaces | |
dc.subject.ucm | Álgebra | |
dc.subject.ucm | Grupos (Matemáticas) | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Groups of symmetric crosscap number less than or equal to 17 | |
dc.type | journal article | |
dc.volume.number | 15 | |
dcterms.references | [1] N. L. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces, volume 219 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1971, doi:10.1007/bfb0060987. [2] A. Bacelo, Los grupos de género imaginario menor que 10, Master’s thesis, Universidad Complutense, Madrid, 2013, http://eprints.ucm.es/25482/. [3] A. Bacelo, Sobre el g´enero imaginario de grupos finitos, Ph.D. thesis, Universidad Complutense, Madrid, 2015, http://eprints.ucm.es/33708/. [4] A. Bacelo, The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 6, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 112 (2018), 391–405, doi:10.1007/s13398-017-0387-6. [5] A. Bacelo, The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 7, Rev. Mat. Complut. 31 (2018), 247–261, doi:10.1007/s13163-017-0245-2. [6] A. Bacelo, J. J. Etayo and E. Martínez, Filling gaps of the symmetric crosscap spectrum, Moscow Math. J. 17 (2017), 357–369. [7] E. Bujalance, Cyclic groups of automorphisms of compact nonorientable Klein surfaces without boundary, Pacific J. Math. 109 (1983), 279–289, doi:10.2140/pjm.1983.109.279. [8] E. Bujalance, J. J. Etayo and E. Martínez, The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 3, 4 and 5, Rev. Mat. Complut. 27 (2014), 305–326, doi:10.1007/s13163-013-0121-7. [9] M. Conder, Groups with symmetric cross-cap number 3 to 65, https://www.math.auckland.ac.nz/˜conder/GroupsWithCrosscapNumber3to65.txt. [10] M. Conder and P. Dobcs´anyi, Determination of all regular maps of small genus, J. Comb.Theory Ser. B 81 (2001), 224–242, doi:10.1006/jctb.2000.2008. [11] M. D. E. Conder and T. W. Tucker, The symmetric genus spectrum of finite groups, Ars Math. Contemp. 4 (2011), 271–289, https://amc-journal.eu/index.php/amc/ article/view/127. [12] H. S. M. Coxeter, The abstract groups Gm;n;p, Trans. Amer. Math. Soc. 45 (1939), 73–150, doi:10.2307/1990017. [13] H. S. M. Coxeter andW. O. J. Moser, Generators and Relations for Discrete Groups, volume 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 4th edition, 1980, doi:10.1007/978-3-662-21943-0. [14] J. J. Etayo, Sobre grupos de automorfismos de superficies de Klein, Ph.D. thesis, Universidad Complutense, Madrid, 1983, http://eprints.ucm.es/15734/. [15] J. J. Etayo and E. Mart´ınez, The symmetric crosscap number of the groups of small-order, J.Algebra Appl. 12 (2013), 1250164 (16 pages), oi:10.1142/s0219498812501642. [16] J. J. Etayo Gordejuela and E. Martínez, The symmetric cross-cap number of the groups Cm � Dn, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 1197–1213, doi:10.1017/s0308210507000169. [17] J. J. Etayo Gordejuela and E. Martínez, The action of the groupsDm�Dn on unbordered Klein surfaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 105 (2011), 97–108, doi:10.1007/s13398-011-0007-9. [18] J. J. Etayo Gordejuela and E. Martínez, The symmetric crosscap number of the families of groups DC3 � Cn and A4 � Cn, Houston J. Math. 38 (2012), 345–358. [19] G. Gromadzki, Abelian groups of automorphisms of compact nonorientable Klein surfaces without boundary, Comment. Math. Prace Mat. 28 (1989), 197–217, doi:10.14708/cm.v28i2. 6234. [20] M. Hall, Jr. and J. K. Senior, The Groups of Order 2n (n � 6), The Macmillan Co., New York, 1964. [21] W. Hall, Automorphisms and coverings of Klein surfaces, Ph.D. thesis, University of Southampton, Southampton, 1977, https://eprints.soton.ac.uk/259986/. [22] A. M. Macbeath, The classification of non-euclidean plane crystallographic groups, Canad. J.Math. 19 (1967), 1192–1205, doi:10.4153/cjm-1967-108-5. [23] C. L. May, The symmetric crosscap number of a group, Glasg. Math. J. 43 (2001), 399–410, doi:10.1017/s0017089501030038. [24] C. L. May and J. Zimmerman, Groups of small symmetric genus, Glasgow Math. J. 37 (1995), 115–129, doi:10.1017/s0017089500030457. [25] C. L. May and J. Zimmerman, There is a group of every strong symmetric genus, Bull. London Math. Soc. 35 (2003), 433–439, doi:10.1112/s0024609303001954. [26] C. L. May and J. Zimmerman, The groups of symmetric genus � � 8, Comm. Algebra 36 (2008), 4078–4095, doi:10.1080/00927870802174793. [27] R. R. Preston, Jr., Fundamental domains and projective structures on compact Klein surfaces, Ph.D. thesis, The University of Texas at Austin, Austin, Texas, 1975, https://search. proquest.com/docview/302777999. [28] D. Singerman, Automorphisms of compact non-orientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50–59, doi:10.1017/s0017089500001142. [29] T. W. Tucker, Symmetric embeddings of Cayley graphs in nonorientable surfaces, in: Y. Alavi, G. Chartrand, O. R. Oellermann and A. J. Schwenk (eds.), Graph Theory, Combinatorics, and Applications, Volume 2, John Wiley & Sons, New York, A Wiley-Interscience Publication, pp. 1105–1120, 1991, proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs held at Western Michigan University, Kalamazoo, Michigan, May 30 – June 3, 1988. [30] H. C. Wilkie, On non-Euclidean crystallographic groups, Math. Z. 91 (1966), 87–102, doi:10.1007/bf01110157. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 79e291a6-3b0c-4ce4-a034-2e8ebf15133e | |
relation.isAuthorOfPublication.latestForDiscovery | 79e291a6-3b0c-4ce4-a034-2e8ebf15133e |
Download
Original bundle
1 - 1 of 1