Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Groups of symmetric crosscap number less than or equal to 17

dc.contributor.authorBacelo Polo, Adrián
dc.date.accessioned2023-06-17T12:45:20Z
dc.date.available2023-06-17T12:45:20Z
dc.date.issued2018
dc.description.abstractEvery finite group G acts on some non-orientable unbordered surfaces. The minimal topological genus of those surfaces is called the symmetric crosscap number of G. It is known that 3 is not the symmetric crosscap number of any group but it remains unknown whether there are other such values, called gaps. In this paper we obtain the groups with symmetric crosscap number less than or equal to 17. Also, we obtain six infinite families with symmetric crosscap number of the form 12k + 3.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación
dc.description.sponsorshipUniversidad Complutense de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/76832
dc.identifier.doi10.26493/1855-3974.1341.5a3
dc.identifier.issn1855-3974
dc.identifier.officialurlhttps://doi.org/10.26493/1855-3974.1341.5a3
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12900
dc.journal.titleArs mathematica contemporanea
dc.language.isoeng
dc.page.final190
dc.page.initial173
dc.publisherUniversity of Primorska
dc.relation.projectIDMTM2014-55565
dc.relation.projectIDUCM910444
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu512
dc.subject.cdu512.54
dc.subject.keywordSymmetric crosscap number
dc.subject.keywordKlein surfaces
dc.subject.ucmÁlgebra
dc.subject.ucmGrupos (Matemáticas)
dc.subject.unesco1201 Álgebra
dc.titleGroups of symmetric crosscap number less than or equal to 17
dc.typejournal article
dc.volume.number15
dcterms.references[1] N. L. Alling and N. Greenleaf, Foundations of the Theory of Klein Surfaces, volume 219 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1971, doi:10.1007/bfb0060987. [2] A. Bacelo, Los grupos de género imaginario menor que 10, Master’s thesis, Universidad Complutense, Madrid, 2013, http://eprints.ucm.es/25482/. [3] A. Bacelo, Sobre el g´enero imaginario de grupos finitos, Ph.D. thesis, Universidad Complutense, Madrid, 2015, http://eprints.ucm.es/33708/. [4] A. Bacelo, The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 6, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 112 (2018), 391–405, doi:10.1007/s13398-017-0387-6. [5] A. Bacelo, The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 7, Rev. Mat. Complut. 31 (2018), 247–261, doi:10.1007/s13163-017-0245-2. [6] A. Bacelo, J. J. Etayo and E. Martínez, Filling gaps of the symmetric crosscap spectrum, Moscow Math. J. 17 (2017), 357–369. [7] E. Bujalance, Cyclic groups of automorphisms of compact nonorientable Klein surfaces without boundary, Pacific J. Math. 109 (1983), 279–289, doi:10.2140/pjm.1983.109.279. [8] E. Bujalance, J. J. Etayo and E. Martínez, The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 3, 4 and 5, Rev. Mat. Complut. 27 (2014), 305–326, doi:10.1007/s13163-013-0121-7. [9] M. Conder, Groups with symmetric cross-cap number 3 to 65, https://www.math.auckland.ac.nz/˜conder/GroupsWithCrosscapNumber3to65.txt. [10] M. Conder and P. Dobcs´anyi, Determination of all regular maps of small genus, J. Comb.Theory Ser. B 81 (2001), 224–242, doi:10.1006/jctb.2000.2008. [11] M. D. E. Conder and T. W. Tucker, The symmetric genus spectrum of finite groups, Ars Math. Contemp. 4 (2011), 271–289, https://amc-journal.eu/index.php/amc/ article/view/127. [12] H. S. M. Coxeter, The abstract groups Gm;n;p, Trans. Amer. Math. Soc. 45 (1939), 73–150, doi:10.2307/1990017. [13] H. S. M. Coxeter andW. O. J. Moser, Generators and Relations for Discrete Groups, volume 14 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 4th edition, 1980, doi:10.1007/978-3-662-21943-0. [14] J. J. Etayo, Sobre grupos de automorfismos de superficies de Klein, Ph.D. thesis, Universidad Complutense, Madrid, 1983, http://eprints.ucm.es/15734/. [15] J. J. Etayo and E. Mart´ınez, The symmetric crosscap number of the groups of small-order, J.Algebra Appl. 12 (2013), 1250164 (16 pages), oi:10.1142/s0219498812501642. [16] J. J. Etayo Gordejuela and E. Martínez, The symmetric cross-cap number of the groups Cm � Dn, Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 1197–1213, doi:10.1017/s0308210507000169. [17] J. J. Etayo Gordejuela and E. Martínez, The action of the groupsDm�Dn on unbordered Klein surfaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 105 (2011), 97–108, doi:10.1007/s13398-011-0007-9. [18] J. J. Etayo Gordejuela and E. Martínez, The symmetric crosscap number of the families of groups DC3 � Cn and A4 � Cn, Houston J. Math. 38 (2012), 345–358. [19] G. Gromadzki, Abelian groups of automorphisms of compact nonorientable Klein surfaces without boundary, Comment. Math. Prace Mat. 28 (1989), 197–217, doi:10.14708/cm.v28i2. 6234. [20] M. Hall, Jr. and J. K. Senior, The Groups of Order 2n (n � 6), The Macmillan Co., New York, 1964. [21] W. Hall, Automorphisms and coverings of Klein surfaces, Ph.D. thesis, University of Southampton, Southampton, 1977, https://eprints.soton.ac.uk/259986/. [22] A. M. Macbeath, The classification of non-euclidean plane crystallographic groups, Canad. J.Math. 19 (1967), 1192–1205, doi:10.4153/cjm-1967-108-5. [23] C. L. May, The symmetric crosscap number of a group, Glasg. Math. J. 43 (2001), 399–410, doi:10.1017/s0017089501030038. [24] C. L. May and J. Zimmerman, Groups of small symmetric genus, Glasgow Math. J. 37 (1995), 115–129, doi:10.1017/s0017089500030457. [25] C. L. May and J. Zimmerman, There is a group of every strong symmetric genus, Bull. London Math. Soc. 35 (2003), 433–439, doi:10.1112/s0024609303001954. [26] C. L. May and J. Zimmerman, The groups of symmetric genus � � 8, Comm. Algebra 36 (2008), 4078–4095, doi:10.1080/00927870802174793. [27] R. R. Preston, Jr., Fundamental domains and projective structures on compact Klein surfaces, Ph.D. thesis, The University of Texas at Austin, Austin, Texas, 1975, https://search. proquest.com/docview/302777999. [28] D. Singerman, Automorphisms of compact non-orientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50–59, doi:10.1017/s0017089500001142. [29] T. W. Tucker, Symmetric embeddings of Cayley graphs in nonorientable surfaces, in: Y. Alavi, G. Chartrand, O. R. Oellermann and A. J. Schwenk (eds.), Graph Theory, Combinatorics, and Applications, Volume 2, John Wiley & Sons, New York, A Wiley-Interscience Publication, pp. 1105–1120, 1991, proceedings of the Sixth Quadrennial International Conference on the Theory and Applications of Graphs held at Western Michigan University, Kalamazoo, Michigan, May 30 – June 3, 1988. [30] H. C. Wilkie, On non-Euclidean crystallographic groups, Math. Z. 91 (1966), 87–102, doi:10.1007/bf01110157.
dspace.entity.typePublication
relation.isAuthorOfPublication79e291a6-3b0c-4ce4-a034-2e8ebf15133e
relation.isAuthorOfPublication.latestForDiscovery79e291a6-3b0c-4ce4-a034-2e8ebf15133e

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bacelo_groups.pdf
Size:
316.61 KB
Format:
Adobe Portable Document Format

Collections