Asymptotic properties of reaction-diffusion systems modeling chemotaxis
dc.book.title | Applied and Industrial Mathematics, Venice—2, 1998 | |
dc.contributor.author | Herrero, Miguel A. | |
dc.contributor.editor | Spigler, Renato | |
dc.date.accessioned | 2023-06-20T21:07:46Z | |
dc.date.available | 2023-06-20T21:07:46Z | |
dc.date.issued | 2000 | |
dc.description | Selected papers from the International Venice–2/Symposium held in Venice, June 11–16, 1998 | |
dc.description.abstract | This paper examines a system first introduced by Keller and Segel in 1970 to model the tendency of slime molds to move towards higher concentrations of a chemical which they themselves secrete. The paper particularly addresses the question of blow-up or chemotactic collapse, i.e., the formation of single point aggregations of the cells. Results are discussed for 2 and 3 space dimensions. Asymptotic computations yield information on the manner of the blow-up. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/22637 | |
dc.identifier.doi | 978-94-010-5823-0 | |
dc.identifier.officialurl | https://www.springerprofessional.de/en/applied-and-industrial-mathematics-venice-2-1998/14848734 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/60761 | |
dc.language.iso | eng | |
dc.page.final | 108 | |
dc.page.initial | 89 | |
dc.page.total | 304 | |
dc.publication.place | Dordrecht | |
dc.publisher | Springer | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.956.4 | |
dc.subject.cdu | 51-76 | |
dc.subject.ucm | Biomatemáticas | |
dc.subject.ucm | Ecuaciones diferenciales | |
dc.subject.unesco | 2404 Biomatemáticas | |
dc.subject.unesco | 1202.07 Ecuaciones en Diferencias | |
dc.title | Asymptotic properties of reaction-diffusion systems modeling chemotaxis | |
dc.type | book part | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1