Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On o-minimal homotopy groups

dc.contributor.authorBaro González, Elías
dc.contributor.authorOtero, Margarita
dc.date.accessioned2023-06-20T00:07:59Z
dc.date.available2023-06-20T00:07:59Z
dc.date.issued2010
dc.description.abstractWe work over an o-minimal expansion of a real closed field. The o-minimal homotopy groups of a definable set are defined naturally using definable continuous maps. We prove that any two semialgebraic maps which are definably homotopic are also semialgebraically homotopic. This result together with known results on semialgebraic homotopy allows us to develop an o-minimal homotopy theory. In particular, we obtain o-minimal versions of the Hurewicz theorems and the Whitehead theorem.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipGEOR
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/14480
dc.identifier.citationBaro E, Otero M. ON O-MINIMAL HOMOTOPY GROUPS. The Quarterly Journal of Mathematics 2010;61:275–89. https://doi.org/10.1093/qmath/hap011.
dc.identifier.doi10.1093/qmath/hap011
dc.identifier.issn0033-5606
dc.identifier.officialurlhttps://doi.org/10.1093/qmath/hap011.
dc.identifier.relatedurlhttp://qjmath.oxfordjournals.org/content/by/year
dc.identifier.urihttps://hdl.handle.net/20.500.14352/42048
dc.issue.number3
dc.journal.titleQuarterly Journal of Mathematics
dc.language.isoeng
dc.page.final289
dc.page.initial275
dc.publisherOxford University Press
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//MTM2008-00272/ES/GEOMETRIA REAL/
dc.relation.projectIDGrupos UCM 910444
dc.rights.accessRightsrestricted access
dc.subject.cdu512
dc.subject.keywordO-minimal homotopy groups
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleOn o-minimal homotopy groups
dc.typejournal article
dc.volume.number61
dcterms.references[1] E. Baro, Normal triangulations in o-minimal structures, preprint, 15pp.,2007, www.uam.es/elias.baro/articulos.html. [2] E. Baro and M. Otero, Locally de nable homotopy, preprint, 33pp., 2008, www.uam.es/elias.baro/articulos.html. [3] A. Berarducci, M. Mamino and M. Otero, Higher homotopy of groups definable in o-minimal structures, 2008 Preprint, arXiv:0809.4940 [math.LO]. [4] A. Berarducci and M. Otero, o-minimal fundamental group, homology and manifolds, J. London Math. Soc. (2) 65 (2002), no. 2, 257-270. [5] A. Berarducci and M. Otero, Transfer methods for o-minimal topology, J. Symb. Log. 68 (2003) 785-794. [6] L. van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, 1998. [7] H. Delfs and M. Knebusch, Separation, retractions and homotopy extension in semialgebraic spaces, Paci_c J. Math. 114 (1984), no. 1, 47-71. [8] H. Delfs and M. Knebusch, Locally semialgebraic spaces, Lecture Notes in Mathematics, 1173, Springer-Verlag, Berlin, 1985. [9] M.Edmundo and M. Otero, Definably compact abelian groups, J. Math.Log. 4 (2004), no. 2, 163-180. [10] A. Hatcher, Algebraic topology, Cambridge University Press, 2002. [11] S. Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII Academic Press, New York-London 1959. [12] A. Piekosz, O-minimal homotopy and generalized (co)homology, preprint, 2008. [13] A.Woerheide, O-minimal homology, PhD Thesis, University of Illinois at Urbana-Champaign, 1996.
dspace.entity.typePublication
relation.isAuthorOfPublication8695b08a-762f-4ef9-ad24-b6fe687ab7cd
relation.isAuthorOfPublication.latestForDiscovery8695b08a-762f-4ef9-ad24-b6fe687ab7cd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
dhom.pdf
Size:
236.9 KB
Format:
Adobe Portable Document Format

Collections