Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier-Stokes problem
| dc.contributor.author | Antontsev, Stanislav Nikolaevich | |
| dc.contributor.author | Díaz Díaz, Jesús Ildefonso | |
| dc.contributor.author | de Oliveira, Hermenegildo Borges | |
| dc.date.accessioned | 2023-06-20T10:54:57Z | |
| dc.date.available | 2023-06-20T10:54:57Z | |
| dc.date.issued | 2004 | |
| dc.description.abstract | We consider a planar stationary flow of an incompressible viscous fluid in a semi-infinite strip governed by the Navier-Stokes system with a feed-back body forces field which depends on the velocity field. Since the presence of this type of non-linear terms is not standard in the fluid mechanics literature, we start by establishing some results about existence and uniqueness of weak solutions. Then, we prove how this fluid can be stopped at a finite distance of the semi-infinite strip entrance by means of this body forces field which depends in a sub-linear way on the velocity field. This localization effect is proved by reducing the problem to a fourth order non-linear one for which the localization of solutions is obtained by means of a suitable energy method. | |
| dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
| dc.description.faculty | Fac. de Ciencias Matemáticas | |
| dc.description.refereed | TRUE | |
| dc.description.status | pub | |
| dc.eprint.id | https://eprints.ucm.es/id/eprint/30786 | |
| dc.identifier.issn | 1720-0768 | |
| dc.identifier.officialurl | http://www.bdim.eu/item?fmt=pdf&id=RLIN_2004_9_15_3-4_257_0 | |
| dc.identifier.relatedurl | http://www.springer.com/ | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14352/51444 | |
| dc.issue.number | 3-4 | |
| dc.journal.title | Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni | |
| dc.language.iso | eng | |
| dc.page.final | 270 | |
| dc.page.initial | 257 | |
| dc.publisher | Accademia Nazionale dei Lincei | |
| dc.rights.accessRights | restricted access | |
| dc.subject.cdu | 53 | |
| dc.subject.keyword | Navier-Stokes system | |
| dc.subject.keyword | Body forces field | |
| dc.subject.keyword | Non-linear fourth order equation | |
| dc.subject.keyword | Energy method | |
| dc.subject.keyword | Localization effect | |
| dc.subject.ucm | Física (Física) | |
| dc.subject.unesco | 22 Física | |
| dc.title | Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier-Stokes problem | |
| dc.type | journal article | |
| dc.volume.number | 15 | |
| dcterms.references | S.N. ANTONTSEV - J.I. DÍAZ - H.B. DE OLIVEIRA, Stopping a viscous fluid by a feedback dissipative external field: I. The stationary Stokes equations. Book of abstratcs of NSEC8, Euler International Mathematical Institute, St. Petersburg 2002. S.N. ANTONTSEV - J.I. DÍAZ - H.B. DE OLIVEIRA, On the confinement of a viscous fluid by means of a feedback external field. C.R. Mécanique, 330, 2002, 797-802. S.N. ANTONTSEV - J.I. DÍAZ - H.B. DE OLIVEIRA, Stopping a viscous fluid by a feedback dissipative field: I. The stationary Stokes problem. J. Math. Fluid Mech., to appear. S.N. ANTONTSEV - J.I. DÍAZ - S.I. SHMAREV, Energy Methods for Free Boundary Problems, Applications to non-linear PDEs and fluid mechanics. Birkhäuser, Boston 2002. F. BERNIS, Extinction of the solutions of some quasilinear elliptic problems of arbitrary order: Part 1. Proc. Symp. Pure Math., 45, 1986, 125-132. F. BERNIS, Qualitative properties for some non-linear higher order degenerate parabolic equations. Houston J. Math., 14, 1988, 319-352. G.P. GALDI, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems. Springer-Verlag, New York 1994. D. GILBARG - N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg 1998. C.O. HORGAN, Plane entry flows and energy estimates for the Navier-Stokes equations. Arch. Rat. Mech. and Analysis, 68, 1978, 359-381. J.K. KNOWLES, On Saint-Venant’s Principle in the Two-Dimensional Linear Theory of Elasticity. Arch. Ration. Mech. Anal., 21, 1966, 1-22. O.A. LADYZHENSKAYA, The mathematical theory of viscous incompressible flow. Mathematics and its Applications, 2, Gordon and Breach, New York 1969. R.A. TOUPIN, Saint-Venant’s Principle. Arch. Ration. Mech. Anal., 18, 1965, 83-96. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 | |
| relation.isAuthorOfPublication.latestForDiscovery | 34ef57af-1f9d-4cf3-85a8-6a4171b23557 |
Download
Original bundle
1 - 1 of 1

