Amplificadores criogénicos de bajo ruido para aplicaciones radioastronómicas y espaciales
Loading...
Download
Official URL
Full text at PDC
Publication date
2018
Defense date
12/06/2017
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
Desde finales del siglo pasado una de las propuestas para la actualización de las grandes infraestructuras radioastronómicas es la de ampliar el campo de visión de las antenas instalando receptores multipixel. La idea fundamental detrás de este tipo de desarrollos es la de sustituir el receptor único típicamente instalado en el plano focal de estos instrumentos por una matriz bidimensional de receptores, implementando lo que habitualmente se conoce como una matriz en plano focal (Focal Plane Array, FPA). Este tipo de sistemas requiere simplificar la cadena de detección de cada uno de los pixeles para aprovechar al máximo el espacio disponible dentro del criostato que alberga los componentes críticos de los receptores. Esto implica modificar las distintas etapas involucradas incluso a expensas de asumir un determinado sacrificio en sensibilidad. En este contexto, uno de los elementos críticos para los receptores de radioastronomía son los amplificadores de bajo ruido (Low Noise Amplifiers, LNAs) criogénicos cuya contribución en ruido es muy significativa debido a su posición al principio de la cadena de detección. La fabricación de amplificadores criogénicos requiere no solo conocer el comportamiento eléctrico de los componentes, sino también una adecuada comprensión de las características térmicas de los materiales utilizados a la temperatura de trabajo y, por supuesto, la capacidad de llevar a cabo una correcta caracterización de su comportamiento con el fin de evaluar críticamente sus prestaciones. El trabajo presentado gira en torno a distintos aspectos del desarrollo experimental de amplificadores de bajo ruido criogénicos. Concretamente se ha llevado a cabo la caracterización térmica de uno de los adhesivos conductores más utilizados en la fabricación de dispositivos electrónicos diseñados para funcionar a temperatura criogénica. Se ha desarrollado un prototipo de LNA específicamente diseñado para cumplir con las restricciones más importantes de los sistemas multipixel. Y se ha implementado una novedosa fuente de ruido basada en un chip para la medida precisa de ruido a temperaturas criogénicas. A continuación se procede a describir de forma más detallada cada una de estas aportaciones...
Since the end of the last century, one of the proposed improvements of large radio astronomy infrastructures is to broaden the field of view of their antennas by installing multipixel receptors. The basic idea behind this type of development is to replace the single receiver normally installed in the focal plane of these instruments with a two-dimensional array of receivers, which is commonly known as a Focal Plane Array (FPA). For this type of system, the detection chain of each one of the pixels must be simplified in order to optimize the available space in the cryostat that houses the critical components of the receptors. This implies the modification of the various different stages involved, even at the expense of a certain degree of sacrifice in sensitivity. In this context, one of the critical elements for radio astronomy receptors are the cryogenic Low Noise Amplifiers (LNAs) whose noise contribution is quite significant due to their position at the beginning of the detector chain. Building cryogenic amplifiers requires not only knowledge of the electrical characteristics of the components, but also a solid grounding in the thermal characteristics of the materials employed at cryogenic temperatures, as well as the ability to correctly measure their behavior in order to make a critical evaluation of their performance. This project examines several aspects of the experimental development of cryogenic low noise amplifiers. Specifically, the thermal conductivity of one of the most widely used conductive adhesives in cryogenic electronic applications has been measured. A prototype of an LNA was designed to address the most significant restrictions imposed by multipixel systems. In addition, a novel noise source based on a chip and used to precisely measure noise at cryogenic temperatures was implemented. A more detailed description of each of these developments follows...
Since the end of the last century, one of the proposed improvements of large radio astronomy infrastructures is to broaden the field of view of their antennas by installing multipixel receptors. The basic idea behind this type of development is to replace the single receiver normally installed in the focal plane of these instruments with a two-dimensional array of receivers, which is commonly known as a Focal Plane Array (FPA). For this type of system, the detection chain of each one of the pixels must be simplified in order to optimize the available space in the cryostat that houses the critical components of the receptors. This implies the modification of the various different stages involved, even at the expense of a certain degree of sacrifice in sensitivity. In this context, one of the critical elements for radio astronomy receptors are the cryogenic Low Noise Amplifiers (LNAs) whose noise contribution is quite significant due to their position at the beginning of the detector chain. Building cryogenic amplifiers requires not only knowledge of the electrical characteristics of the components, but also a solid grounding in the thermal characteristics of the materials employed at cryogenic temperatures, as well as the ability to correctly measure their behavior in order to make a critical evaluation of their performance. This project examines several aspects of the experimental development of cryogenic low noise amplifiers. Specifically, the thermal conductivity of one of the most widely used conductive adhesives in cryogenic electronic applications has been measured. A prototype of an LNA was designed to address the most significant restrictions imposed by multipixel systems. In addition, a novel noise source based on a chip and used to precisely measure noise at cryogenic temperatures was implemented. A more detailed description of each of these developments follows...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física Aplicada III, leída el 12-06-2017