Para depositar en Docta Complutense, identifícate con tu correo @ucm.es en el SSO institucional: Haz clic en el desplegable de INICIO DE SESIÓN situado en la parte superior derecha de la pantalla. Introduce tu correo electrónico y tu contraseña de la UCM y haz clic en el botón MI CUENTA UCM, no autenticación con contraseña.
 

Minimum K-phi-divergence estimator

Loading...
Thumbnail Image

Full text at PDC

Publication date

2004

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science
Citations
Google Scholar

Citation

Abstract

In the present work, the problem of estimating parameters of statistical models for categorical data is analyzed. The minimum K-phi-divergence estimator is obtained minimizing the K-phi-divergence measure between the theoretical and the empirical probability vectors. Its asymptotic properties are obtained. Rom a simulation study, the conclusion is that our estimator emerges as an attractive alternative to the classical maximum likelihood estimator.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections