Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Effects of immobilized VEGF on endothelial progenitor cells cultured on silicon substituted and nanocrystalline hydroxyapatites

dc.contributor.authorFeito Castellano, María José
dc.contributor.authorSerrano, M. C.
dc.contributor.authorOñaderra Sánchez, Mercedes
dc.contributor.authorMatesanz Sancho, María Concepción
dc.contributor.authorSánchez Salcedo, Sandra
dc.contributor.authorArcos Navarrete, Daniel
dc.contributor.authorVallet Regí, María Dulce Nombre
dc.contributor.authorPortolés Pérez, María Teresa
dc.date.accessioned2023-06-17T21:49:26Z
dc.date.available2023-06-17T21:49:26Z
dc.date.issued2016-09-21
dc.descriptionRESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí)
dc.description.abstractVascular endothelial growth factor (VEGF) plays an essential role in angiogenesis and vascular homeostasis. Endothelial progenitor cells (EPCs) are primitive bone marrow cells participating in neovascularization and revascularization processes, which also promote bone regeneration. Synthetic hydroxyapatite (HA) has been widely used in bone repair and implant coatings. In HA-based materials, small levels of ionic substitution by silicon (Si) have significant effects on osteoclastic and osteoblastic responses. Moreover, nanocrystalline hydroxyapatites (nano-HA) display enhanced bioreactivity and beneficial effects in bone formation. In this work, the angiogenic potential of VEGF-121 adsorbed on crystalline and nanocrystalline HAs with different Si proportion is evaluated with endothelial-like cells derived from EPCs cultured on nano-HA, nano-SiHA0.25, nano-SiHA0.4, HA, SiHA0.25 and SiHA0.4 disks. The Si amount incorporated for x ¼ 0.25 is enough to yield changes in the textural parameters and surface charge without decomposing the HA phase. Si substitution for x ¼ 0.4 does not result in pure Si-substituted apatites. Si probably remains at the grain boundaries as amorphous silica in nano-SiHA0.4 and SiHA0.4 is decomposed in a-TCP and HA after 1150 �C treatment. Immobilized VEGF on nano-HA, nano-SiHA0.25, nano-SiHA0.4, HA, SiHA0.25 and SiHA0.4 maintains its function exerting a local regulation of the cell response. The crystallite size and topography of nanocrystalline HAs could produce insufficient and weak contacts with endothelial-like cells triggering anoikis. Concerning Si proportion, the best results are obtained with SiHA0.25/VEGF and nano- SiHA0.25/VEGF disks. All these results suggest the potential utility of SiHA0.25/VEGF and nano-SiHA0.25/VEGF for bone repair and tissue engineering by promoting angiogenesis.
dc.description.departmentDepto. de Química en Ciencias Farmacéuticas
dc.description.departmentSección Deptal. de Bioquímica y Biología Molecular (Biológicas)
dc.description.facultyFac. de Farmacia
dc.description.facultyFac. de Ciencias Biológicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipAgening Network of Excellence
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/40895
dc.identifier.doi10.1039/C6RA19154A
dc.identifier.issn2046-2069
dc.identifier.officialurlhttp://www.rsc.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/17595
dc.journal.titleRSC Advances
dc.language.isoeng
dc.page.final92595
dc.page.initial92586
dc.publisherRoyal Society of Chemistry
dc.relation.projectIDMAT2013-43299-R
dc.relation.projectIDMAT2015-64831-R
dc.relation.projectIDCSO2010-11384-E
dc.rights.accessRightsopen access
dc.subject.cdu546
dc.subject.cdu66
dc.subject.cdu615.46
dc.subject.keywordGrotwth-factor
dc.subject.keywordIn-vitro
dc.subject.keywordTherapeutic targets
dc.subject.keywordBone repair
dc.subject.keywordBiology
dc.subject.keywordBehavior
dc.subject.keywordDifferentation
dc.subject.keywordBioceramics
dc.subject.keywordOsteoblasts
dc.subject.keywordMechanisms
dc.subject.ucmMateriales
dc.subject.ucmQuímica inorgánica (Química)
dc.subject.unesco3312 Tecnología de Materiales
dc.subject.unesco2303 Química Inorgánica
dc.titleEffects of immobilized VEGF on endothelial progenitor cells cultured on silicon substituted and nanocrystalline hydroxyapatites
dc.typejournal article
dc.volume.number6
dcterms.references1 D. Barati, S. R. P. Shariati, S. Moeinzadeh, J. M. Melero- Martin, A. Khademhosseini and E. Jabbar, J. Controlled Release, 2016, 223, 126. 2 F. M. Chen, M. Zhang and Z. F. Wu, Biomaterials, 2010, 31, 6279. 3 R. R. Chen and D. J. Mooney, Pharm. Res., 2003, 20, 1103. 4 A. G. Guex, D. Hegemann, M. N. Giraud, H. T. Tevaearai, A. M. Popa, R. M. Rossi and G. Fortunato, Colloids Surf., B, 2014, 123, 724. 5 M. J. Feito, R. M. Lozano, M. Alcaide, C. Ram´ırez-Santill´an, D. Arcos, M. Vallet-Reg´ı and M. T. Portol´es, J. Mater. Sci.: Mater. Med., 2011, 22, 405. 6 M. C. Matesanz, M. J. Feito, C. Ram´ırez-Santill´an, R. M. Lozano, S. S´anchez-Salcedo, D. Arcos, M. Vallet-Reg´ı and M. T. Portol´es, Macromol. Biosci., 2012, 12, 446. 7 D. Lozano, M. J. Feito, S. Portal-Nu˜nez, R. M. Lozano, M. C. Matesanz, M. C. Serrano, M. Vallet-Reg´ı, M. T. Portol´es and Py. Esbrit, Acta Biomater., 2012, 8, 2770. 8 S. B. Fox, G. Gasparini and A. L. Harris, Lancet Oncol., 2001, 2, 278. 9 N. Ferrara, H. Gerber and J. LeCouter, Nat. Med., 2003, 9, 669. 10 C. J. Robinson and S. E. Stringer, J. Cell Sci., 2001, 114, 853. 11 N. Ferrara and T. Davis-Smyth, Endocr. Rev., 1997, 18, 4. 12 K. Alitalo and P. Carmeliet, Cancer Cell, 2002, 1, 219. 13 G. Niu and X. Chen, Curr. Drug Targets, 2010, 11, 1000. 14 A. G. Guex, D. Hegemann, M. N. Giraud, H. T. Tevaerai, A. M. Popa, R. M. Rossi and G. Fortunato, Colloids Surf., B, 2014, 123, 724. 15 K. S. Maters, Macromol. Biosci., 2011, 11, 1149. 16 N. Rozen, T. Bick, A. Bajayo, B. Shamian, M. Schri-Tzadok, Y. Gabet, A. Yayon, I. Bab, M. Soudry and D. Lewinson, Bone, 2009, 45, 918. 17 Y. Q. Yang, Y. Y. Tan, R. Wong, A. Wenden, L. K. Zhang and A. B. M. Rabie, Int. J. Oral Sci., 2012, 4, 64. 18 J. P. Levesque, F. M. Helwani and I. G. Winkler, Leukemia, 2010, 24, 1979. 19 J. Street, M. Bao, S. Bunting, F. V. Peale, N. Ferrara, H. Steinmetz, J. Hoeffel, J. L. Cleland, A. Daugherty and N. van Bruggen, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 9656. 20 C. Kalka, H. Masuda, T. Takahashi, W. M. Kalka-Moll, M. Silver, M. Kerany, T. Li, J. M. Isner and T. Asahara, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 3422. 21 A. Papathanasopoulos and P. V. Giannoundis, Injury, 2008, 39S2, S21. 22 M. C. Serrano, R. Pagani, M. Vallet-Reg´ı, J. Pe˜na, J. V. Comas and M. T. Portol´es, Acta Biomater., 2009, 5, 2045. 23 M. S. Chong, W. K. Ng and J. K. Chan, Stem Cells Transl. Med., 2016, 5, 530. 24 M. M. Tenreiro, R. Ferreira, L. Bernardino and M. A. Brito, Neurobiol. Dis., 2016, 91, 262. 25 H. Zigdon-Giladi, U. Rudich, G. Michaeli Geller and A. Evron, World J. Stem Cell., 2015, 7, 630. 26 H. Zhou and J. Lee, Acta Biomater., 2011, 7, 2769. 27 R. Bosco, J. Van Den Beucken, S. Leeuwenburgh and J. Jansen, Coatings, 2012, 2, 95. 28 J. H. Shepherd, D. V. Shepherd and S. M. Best, J. Mater. Sci.: Mater. Med., 2012, 23, 2335. 29 A. M. Pietak, J. W. Reid and M. J. Stott, Biomaterials, 2007, 28, 4023. 30 M. Bohner, Biomaterials, 2009, 30, 6403. 31 F. Balas, J. P´erez-Pariente and M. Vallet-Reg´ı, J. Biomed. Mater. Res., Part A, 2003, 66, 364. 32 A. E. Porter, S. M. Best and W. Boneld, J. Biomed. Mater. Res., Part A, 2004, 68, 133. 33 M. Vallet-Reg´ı and D. Arcos, J. Mater. Chem., 2005, 15, 1509. 34 S. V. Dorozhkin, Materials, 2009, 2, 1975. 35 N. Patel, S. M. Best, W. Boneld, I. R. Gibson, K. A. Hing, E. Damien and P. A. Revell, J. Mater. Sci.: Mater. Med., 2002, 13, 1199. 36 M. I. Kay, R. A. Young and A. S. Posner, Nature, 1964, 204, 1050. 37 J. Rodr´ıguez-Carvajal, Phys. B, 1993, 192, 55. 92594 | RSC Adv., 2016, 6, 92586–92595 This journal is © The Royal Society of Chemistry 2016 RSC Advances Paper 38 P. Thompson, D. E. Cox and J. B. Hastings, J. Appl. Crystallogr., 1987, 20, 79. 39 S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 1938, 60, 309. 40 E. P. Barret, L. J. Joyner and P. P. Halenda, J. Am. Chem. Soc., 1951, 73, 373. 41 M. C. Serrano, R. Pagani, G. A. Ameer, M. Vallet-Reg´ı and M. T. Portol´es, J. Biomed. Mater. Res., Part A, 2008, 87, 964. 42 S. Samavedi, A. R. Whittington and A. S. Goldstein, Acta Biomater., 2013, 9, 8037. 43 A. E. Porter, N. Patel, J. N. Skepper, S. M. Best and W. Boneld, Biomaterials, 2003, 24, 4609. 44 S. V. Dorozhkin, Materials, 2009, 2, 1975. 45 E. S. Thian, Z. Ahmad, J. Huang, M. J. Edirisinghe, S. N. Jayasinghe, D. C. Ireland, R. A. Brooks, N. Rushton, W. Boneld and S. M. Best, Acta Biomater., 2010, 6, 750. 46 M. C. Matesanz, M. J. Feito, M. O˜naderra, C. Ram´ırez- Santill´an, C. da Casa, D. Arcos, M. Vallet-Reg´ı, J. M. Rojo and M. T. Portol´es, J. Colloid Interface Sci., 2014, 416, 59. 47 D. Arcos, J. Rodr´ıguez-Carvajal and M. Vallet-Reg´ı, Chem. Mater., 2004, 16, 2300. 48 S. V. Dorozhkin, Biomaterials, 2010, 31, 1465. 49 S. Langstaff, M. Sayer, T. J. N. Smith, S. M. Pugh, S. A. M. Hesp and W. T. Thompson, Biomaterials, 1999, 7, 1727. 50 I. R. Gibson, S. M. Best and W. Boneld, J. Biomed. Mater. Res., 1999, 44, 422. 51 J. Amirian, N. T. B. Linh, Y. K. Min and B. T. Lee, Int. J. Biol. Macromol., 2015, 76, 10. 52 M. B. Gorbet and M. V. Seon, Biomaterials, 2004, 25, 5681. 53 A. Rosengren, E. Pavlovic, S. Oscarsson, A. Krajewski, A. Ravaglioli and A. Piancastelli, Biomaterials, 2002, 23, 1237. 54 Y. Wang, G. Subbiahdoss, J. de Vries, M. Libera, H. C. van der Mei and H. J. Busscher, Biofouling, 2012, 28, 1011. 55 C. Tedjo, K. G. Neoh, E. T. Kang, N. Fang and V. Chan, J. Biomed. Mater. Res., Part A, 2007, 82, 479. 56 H. Chen, L. Yuan, W. Song, Z. Wu and D. Li, Prog. Polym. Sci., 2008, 33, 1059. 57 M. C. Matesanz, J. Linares, M. O˜naderra, M. J. Feito, F. J. Mart´ınez-V´azquez, D. Arcos, S. S´anchez-Salcedo, M. T. Portol´es and M. Vallet-Reg´ı, Colloids Surf., B, 2015, 133, 304. 58 K. Walenta, E. B. Friedrich, F. Sehnert, N. Werner and G. Nickenig, Biochem. Biophys. Res. Commun., 2005, 333, 476. 59 S. M. Frisch and R. A. Screaton, Curr. Opin. Cell Biol., 2001, 13, 555. 60 K. A. Hing, P. A. Revell, N. Smith and T. Buckland, Biomaterials, 2006, 27, 5014. 61 B. Vollmar and M. D. Menger, Physiol. Rev., 2009, 89, 1269. 62 S. Esser, K. Wolburg, H. Wolburg, G. Breier, T. Kurzchalia and W. Risau, J. Cell Biol., 1998, 140, 947. 63 J. Funyu, S. Mochida, M. Inao, A. Matsui and K. Fujiwara, Biochem. Biophys. Res. Commun., 2001, 280, 481.
dspace.entity.typePublication
relation.isAuthorOfPublication216318f7-e25a-4850-b122-856eb08b3e2f
relation.isAuthorOfPublication385cd4f2-367f-4fe2-8470-cbce8c8da473
relation.isAuthorOfPublication14ed7f4d-b114-4a3c-9d8c-83f05fbfc703
relation.isAuthorOfPublicationd92c7075-3d31-45ec-a18d-35a5010ee8e1
relation.isAuthorOfPublication791023b8-2531-44eb-ba01-56e3b7caa0cb
relation.isAuthorOfPublication4b317058-0bd1-4fd8-afab-5fa79a4b7002
relation.isAuthorOfPublication.latestForDiscovery216318f7-e25a-4850-b122-856eb08b3e2f

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
(663) RSC Advances. 6, 92586-92595 2016 DANI.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format

Collections