Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Vehicle Counting in Video Sequences: An Incremental Subspace Learning Approach

dc.contributor.authorRosas-Arias, Leonel
dc.contributor.authorPortillo-Portillo, Jose
dc.contributor.authorHernández-Suárez, Aldo
dc.contributor.authorOlivares-Mercado, Jesus
dc.contributor.authorSánchez-Pérez, Gabriel
dc.contributor.authorToscano-Medina, Karina
dc.contributor.authorPérez-Meana, Hector
dc.contributor.authorSandoval Orozco, Ana Lucila
dc.contributor.authorGarcía Villalba, Luis Javier
dc.date.accessioned2023-06-17T12:38:36Z
dc.date.available2023-06-17T12:38:36Z
dc.date.issued2019
dc.description.abstractThe counting of vehicles plays an important role in measuring the behavior patterns of traffic flow in cities, as streets and avenues can get crowded easily. To address this problem, some Intelligent Transport Systems (ITSs) have been implemented in order to count vehicles with already established video surveillance infrastructure. With this in mind, in this paper, we present an on-line learning methodology for counting vehicles in video sequences based on Incremental Principal Component Analysis (Incremental PCA). This incremental learning method allows us to identify the maximum variability (i.e., motion detection) between a previous block of frames and the actual one by using only the first projected eigenvector. Once the projected image is obtained, we apply dynamic thresholding to perform image binarization. Then, a series of post-processing steps are applied to enhance the binary image containing the objects in motion. Finally, we count the number of vehicles by implementing a virtual detection line in each of the road lanes. These lines determine the instants where the vehicles pass completely through them. Results show that our proposed methodology is able to count vehicles with 96.6% accuracy at 26 frames per second on average—dealing with both camera jitter and sudden illumination changes caused by the environment and the camera auto exposure.
dc.description.departmentDepto. de Ingeniería de Software e Inteligencia Artificial (ISIA)
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipUnión Europea. Horizonte 2020
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/67659
dc.identifier.doi10.3390/s19132848
dc.identifier.issn1424-8220
dc.identifier.officialurlhttps://doi.org/10.3390/s19132848
dc.identifier.relatedurlhttps://www.mdpi.com/1424-8220/19/13/2848
dc.identifier.urihttps://hdl.handle.net/20.500.14352/12687
dc.issue.number13
dc.journal.titleSensors
dc.language.isoeng
dc.page.initial2848
dc.publisherMDPI
dc.relation.projectIDRAMSES (700326)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordvideo processing
dc.subject.keywordmotion detection
dc.subject.keywordincremental learning
dc.subject.keywordIncremental PCA
dc.subject.keywordtraffic flow
dc.subject.ucmInformática (Informática)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.04 Inteligencia Artificial
dc.titleVehicle Counting in Video Sequences: An Incremental Subspace Learning Approach
dc.typejournal article
dc.volume.number19
dspace.entity.typePublication
relation.isAuthorOfPublicationdea44425-99a5-4fef-b005-52d0713d0e0d
relation.isAuthorOfPublication0f67f6b3-4d2f-4545-90e1-95b8d9f3e1f0
relation.isAuthorOfPublication.latestForDiscoverydea44425-99a5-4fef-b005-52d0713d0e0d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Vehicle_Counting_in_Video_Sequences_An_Incremental.pdf
Size:
9.93 MB
Format:
Adobe Portable Document Format

Collections