Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Weakly compact operators and the strong* topology for a Banach space

Loading...
Thumbnail Image

Full text at PDC

Publication date

2010

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge University Press
Citations
Google Scholar

Citation

Peralta Pereira, A., Villanueva Díez, I., Wright, J. D. M. & Ylinen, K. «Weakly Compact Operators and the Strong* Topology for a Banach Space». Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol. 140, n.o 6, diciembre de 2010, pp. 1249-67. DOI.org (Crossref), https://doi.org/10.1017/S0308210509001486.

Abstract

The strong* topology s_(X) of a Banach space X is defined as the locally convex topology generated by the seminorms x 7! kSxk for bounded linear maps S from X into Hilbert spaces. The w-right topology for X, _(X), is a stronger locally convex topology, which may be analogously characterised by taking reflexive Banach spaces in place of Hilbert spaces. For any Banach space Y , a linear map T : X ! Y is known to be weakly compact precisely when T is continuous from the w-right topology to the norm topology of Y . The main results deal with conditions for, and consequences of, the coincidence of these two topologies on norm bounded sets. A large class of Banach spaces, including all C_-algebras, and more generally, all JB_-triples, exhibit this behaviour.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections