Driven inelastic Maxwell models with high energy tails

dc.contributor.authorErnst, M. H.
dc.contributor.authorBrito López, Ricardo
dc.date.accessioned2023-06-20T18:44:30Z
dc.date.available2023-06-20T18:44:30Z
dc.date.issued2002-04
dc.description©2002 The American Physical Society. The authors acknowledge financial support from DGES (Spain) Grant Nº BFM-2001 0291.
dc.description.abstractThe solutions of the homogeneous nonlinear Boltzmann equation for inelastic Maxwell models, when driven by different types of thermostats, show, in general, overpopulated high energy tails of the form similar toexp(-ac), with power law tails and Gaussian tails as border line cases. The results are compared with those for inelastic hard spheres, and a comprehensive picture of the long time behavior in freely cooling and driven inelastic systems is presented.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDGES (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21414
dc.identifier.doi10.1103/PhysRevE.65.040301
dc.identifier.issn1539-3755
dc.identifier.officialurlhttp://pre.aps.org/pdf/PRE/v65/i4/e040301
dc.identifier.relatedurlhttp://pre.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58488
dc.issue.number4, Par
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDBFM-2001 0291
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordGranular fluids
dc.subject.keywordEquations
dc.subject.keywordMedia
dc.subject.keywordState
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titleDriven inelastic Maxwell models with high energy tails
dc.typejournal article
dc.volume.number65
dcterms.references[1] G.P. Collins, Sci. Am. 284 (1), 17 (2001). [2] A. Baldassarri, U. Marini Bettolo Marconi, and A. Puglisi, (a) e-print cond-mat/0105299; (b) e-print cond-mat/0111066; (c) (private communication). [3] E. Ben-Naim and P.L. Krapivsky, Phys. Rev. E 61, R5 (2000); P.L. Krapivsky and E. Ben-Naim, e-print cond-mat/0111044. [4] M.H. Ernst and R. Brito, (a) e-print cond mat/0111093; (b) e-print cond-mat/0112417. [5] S.E. Esipov and T. Pöschel, J. Stat. Phys. 86, 1395 (1997). [6] T.P.C. van Noije and M.H. Ernst, Granular Matter 1, 57 (1998); e-print cond-mat/9803042. [7] J.J. Brey, M.J. Ruiz-Montero, and D. Cubero, Phys. Rev. E 54, 3664 (1996). [8] J.M. Montanero and A. Santos, Granular Matter 2, 53 (2000); e-print cond-mat/0002323. [9] A. Barrat, T. Biben, Z. Racz, E. Trizac, and F. van Wijland, e-print cond-mat/0110345. [10] J.A. Carrillo, C. Cercignani, and I.M. Gamba, Phys. Rev. E 62, 7700 (2000). [11] Th. Biben, Ph. A. Martin, and J. Piasecki, Physica A (to be Published). [12] T.P.C. van Noije, M.H. Ernst, E. Trizac, and I. Pagonabarraga, Phys. Rev. E 59, 4326 (1999). [13] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993). [14] A.V. Bobylev and C. Cercignani (unpublished). [15] A.V. Bobylev, J.A. Carrillo, and I.M. Gamba, J. Stat. Phys. 98, 743 (2000). [16] D. Evans and G.P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990). [17] D.R.M. Williams and F.C. MacKintosh, Phys. Rev. E 54, R9 (1996). [18] I. Pagonabarraga, E. Trizac, T.P.C. van Noije, and M.H. Ernst, e-print cond-mat/0107570. [19] C. Bizon, M.D. Shattuck, J.B Swift, and H.L. Swinney, Phys. Rev. E 60, 4340 (1999). [20] L. Acedo, A. Santos, and A.V. Bobylev, e-print cond-mat/0109490. [21] T. Krook and T.T. Wu, Phys. Rev. Lett. 36, 1107 (1976). [22] M.H. Ernst, Phys. Rep. 78, 1 (1981). [23] B. Nienhuis (private communication).
dspace.entity.typePublication
relation.isAuthorOfPublicationb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87
relation.isAuthorOfPublication.latestForDiscoveryb5d83e4b-6cf5-4cfc-9a1e-efbf55f71f87

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Brito14libre.pdf
Size:
62.55 KB
Format:
Adobe Portable Document Format

Collections