Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Scalar conservation laws with general boundary condition and continuous flux function.

dc.contributor.authorAmmar, Kaouther
dc.contributor.authorWittbold, Petra
dc.contributor.authorCarrillo Menéndez, José
dc.date.accessioned2023-06-20T09:35:45Z
dc.date.available2023-06-20T09:35:45Z
dc.date.issued2006
dc.description.abstractWe introduce a notion of entropy solution for a scalar conservation law on a bounded domain with nonhomogeneous boundary condition: u(t) + div Phi (u) = f on Q = (0, T) x Omega, u (0, (.))= u(0) on Q and "u = a on some part of the boundary (0, T) x partial derivative Omega." Existence and uniqueness of the entropy solution is established for any Phi is an element of C(R; R-N), u(0) is an element of L-infinity(Q), f is an element of L-infinity(Q), a is an element of L-infinity((0, T) x partial derivative Omega). In the L-1-setting, a corresponding result is proved for the more general notion of renormalised entropy solution.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15555
dc.identifier.doi10.1016/j.jde.2006.05.002
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/article/pii/S002203960600204X
dc.identifier.relatedurlhttp://www.sciencedirect.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/49992
dc.issue.number1
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final139
dc.page.initial111
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.keywordConservation law
dc.subject.keywordNonhomogeneous boundary conditions
dc.subject.keywordContinuous flux
dc.subject.keywordPenalization
dc.subject.keywordL1-Theory
dc.subject.keywordRenormalized entropy solution
dc.subject.ucmEcuaciones diferenciales
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.titleScalar conservation laws with general boundary condition and continuous flux function.
dc.typejournal article
dc.volume.number228
dcterms.referencesC. Bardos, A.Y. LeRoux, J.C. Nedelec, First order quasilinear equations with boundary conditions,Comm. Partial Differential Equations 4 (9) (1979) 1017–1034. Ph. Bénilan, J. Carrillo, P. Wittbold, Renormalized entropy solutions of scalar conservation laws, Ann. Sc. Norm.Super. Pisa Cl. Sci. 29 (2000) 313–329. Ph. Bénilan, M.G. Crandall, A. Pazy, Nonlinear Evolution Equations in Banach Spaces, book in preparation. J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999) 269–361. J. Carrillo, P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic–parabolic problems, J. Differential Equations 156 (1999) 93–121. J. Carrillo, P.Wittbold, Renormalized entropy Differential Equations 185 (2002) 137–160. S.N. Kruzhkov, Generalized solutions of the Cauchy problem in the large for first-order nonlinear equations, Soviet Math. Dokl. 10 (1969) 785–788. S.N. Kruzhkov, First-order quasilinear equations in several independent variables, Math. USSR-Sb. 10 (1970) 217–243. J. Malek, J. Necas, M. Rokyta, M. Ruzicka, Weak and Measure-Valued Solutions to Evolutionary PDEs, Appl.Math. Math. Comput., vol. 13, Chapman & Hall, London, 1996. C. Mascia, A. Porretta, A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic–hyperbolic equations, Arch. Ration. Mech. Anal. 163 (2002) 87–124. A. Michel, J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods, SIAM J. Numer. Anal. 41 (6) (2003) 2262–2293. F. Otto, Initial boundary-value problem for a scalar conservation law, C. R. Acad. Sci. Paris 322 (1996) 729–734. A. Porretta, J. Vovelle, L1-Solutions to first-order hyperbolic equations in bounded domains, Comm. Partial Differential Equations 28 (2003) 381–408. G. Vallet, Dirichlet problem for a nonlinear conservation law, Rev. Mat. Complut. XIII (1) (2000) 231–250. J. Vovelle, Prise en compte des conditions aux limites dans les équations hyperboliques non-linéaires, Mémoire de thèse, Université Aix-Marseille 1, Décembre 2002.
dspace.entity.typePublication
relation.isAuthorOfPublication48ac980d-beb1-40b0-acec-caec3a109b1c
relation.isAuthorOfPublication.latestForDiscovery48ac980d-beb1-40b0-acec-caec3a109b1c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Carrillo01.pdf
Size:
267.52 KB
Format:
Adobe Portable Document Format

Collections