Vanishing theorems and syzygies for K3 surfaces and Fano varieties.
dc.contributor.author | Gallego Rodrigo, Francisco Javier | |
dc.contributor.author | Purnaprajna, Bangere P. | |
dc.date.accessioned | 2023-06-20T16:52:30Z | |
dc.date.available | 2023-06-20T16:52:30Z | |
dc.date.issued | 2000 | |
dc.description.abstract | In this article we prove results concerning the vanishing of Koszul cohomology groups on K3 surfaces and n-dimensional Fano varieties of index n - 2. As an application of these vanishings we obtain results on projective normality and syzygies for K3 surfaces and Fano varieties. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/15413 | |
dc.identifier.doi | 10.1016/S0022-4049(98)00097-8 | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/S0022404998000978 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57294 | |
dc.issue.number | 3 | |
dc.journal.title | Journal of Pure and Applied Algebra | |
dc.language.iso | eng | |
dc.page.final | 265 | |
dc.page.initial | 251 | |
dc.publisher | Elsevier Science B.V. (North-Holland) | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | Vanishing theorems | |
dc.subject.keyword | Syzygies | |
dc.subject.keyword | K3 surface | |
dc.subject.keyword | Fano n-folds | |
dc.subject.keyword | Line bundle | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Vanishing theorems and syzygies for K3 surfaces and Fano varieties. | |
dc.type | journal article | |
dc.volume.number | 146 | |
dcterms.references | D. Butler, Normal generation of vector bundles over a curve, J. Dierential Geometry 39 (1994) 1{34. L. Ein, R. Lazarsfeld, Koszul cohomology and syzygies of projective varieties, Inv. Math. 111 (1993)51{ 67. F. Gallego, B.P. Purnaprajna, Projective normality and syzygies of algebraic surfaces, J. Reine Angew.Math.,to appear. M. Green, Koszul cohomology and the geometry of projective varieties, J. Dierential Geometry 19 (1984) 125{171. V.A. Iskovskih, Fano 3-folds I, Math. USSR Izvestija 11(1977) 485{528. V.A. Iskovskih, Fano 3-folds II, Math. USSR Izvestija 12 (1978) 469{506. A. Mayer, Families of K-3 surfaces, Nagoya Math. J. 48 (1972) 1{17. Y. Miyaoka, The Chern class and Kodaira dimension of a minimal variety, in: Algebraic Geometry, Sendai, 1985, Adv. Studies in Pure Math., vol 10, pp. 449{476. K. Paranjape, S. Ramanan, On the canonical ring of a curve, in: Algebraic Geometry and Commutative Algebra in Honor of Nagata, vol 2, pp. 503{516. G. Pareschi, B.P. Purnaprajna, Canonical ring of a curve is Koszul: a simple proof, Illinois J. Math. 41 (1997) 266-271. B. Saint-Donat, On projective models of K3 surfaces, Amer. J. Math. 96 (1974) 602{ 639. C.S. Seshadri, Vector bundles on curves, in: Linear Algebraic Groups and Their Representations, Los Angeles, 1992, Contemporary Math., vol. 153, American Mathematical Society, Providence, RI, 1993,pp. 163{200. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 708fdd58-694b-4a58-8267-1013d3272036 | |
relation.isAuthorOfPublication.latestForDiscovery | 708fdd58-694b-4a58-8267-1013d3272036 |
Download
Original bundle
1 - 1 of 1