Estimating fog-top height through near-surface micrometeorological measurements
dc.contributor.author | Román Cascón, Carlos | |
dc.contributor.author | Yagüe Anguis, Carlos | |
dc.contributor.author | Steeneveld, Gert-Jan | |
dc.contributor.author | Sastre Marugán, Mariano | |
dc.contributor.author | Arrillaga, Jon Ander | |
dc.contributor.author | Maqueda Burgos, Gregorio | |
dc.date.accessioned | 2023-06-18T06:50:54Z | |
dc.date.available | 2023-06-18T06:50:54Z | |
dc.date.issued | 2016-03-15 | |
dc.description | © 2015 Elsevier B.V. This research has been funded by the Spanish Government (MINECO project CGL2012-37416-C04-02 and grant BES-2013 064585). The GR3/14 program (supported by UCM and Banco Santander) has also partially financed this work through the Research Group Micrometeorology and Climate Variability (No. 910437). Part of this work has been completed during a scientific stay of Carlos Román Cascón in Wageningen University through a WIMEK Research Fellowship. The contribution by G.J. Steeneveld has partly been sponsored by the NWO contract 863.10.010 (Lifting the fog). We would like to thank KNMI, especially Dr. Fred Bosveld for making CESAR observations available and Dr. Peláez and Prof. Casanova for allowing us access to CIBA facilities. The authors would like to thank the two anonymous reviewers for their helpful comments, which have improved the quality and clarity of the paper. | |
dc.description.abstract | Fog-top height (fog thickness) is very useful information for aircraft maneuvers, data assimilation/validation of Numerical Weather Prediction models or nowcasting of fog dissipation. This variable is usually difficult to determine, since the fog-layer top cannot be observed from the surface. In some cases, satellite data, ground remote sensing instruments or atmospheric soundings are used to provide approximations of fog-top height. These instruments are expensive and their data not always available. In this work, two different methods for the estimation of fog-top height from field measurements are evaluated from the statistical analysis of several radiation-fog events at two research facilities. Firstly, surface friction velocity and buoyancy flux are here presented as potential indicators of fog thickness, since a linear correlation between fog thickness and surface turbulence is found at both sites. An operational application of this method can provide a continuous estimation of fog-top height with the deployment of a unique sonic anemometer at surface. Secondly, the fog-top height estimation based on the turbulent homogenisation within well-mixed fog (an adiabatic temperature profile) is evaluated. The latter method provides a high percentage of correctly-estimated fog-top heights for well-mixed radiation fog, considering the temperature difference between different levels of the fog. However, it is not valid for shallow fog (~ less than 50 m depth), since in this case, the weaker turbulence within the fog is not able to erode the surface-based temperature inversion and to homogenise the fog layer. | |
dc.description.department | Depto. de Física de la Tierra y Astrofísica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Ministerio de Economía y Competitividad (MINECO), España | |
dc.description.sponsorship | GR3/14 program (UCM-BSCH) | |
dc.description.sponsorship | Wageningen Institute for Environment and Climate Research (WIMEK), Holanda | |
dc.description.sponsorship | NWO Funding (Netherlands Organisation for Health Research and Development), Holanda | |
dc.description.sponsorship | Universidad Complutense de Madrid (UCM) | |
dc.description.sponsorship | Banco Santander Central Hispano (BSCH) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/36451 | |
dc.identifier.doi | 10.1016/j.atmosres.2015.11.016 | |
dc.identifier.issn | 0169-8095 | |
dc.identifier.officialurl | http://dx.doi.org/10.1016/j.atmosres.2015.11.016 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/24390 | |
dc.journal.title | Atmospheric research | |
dc.language.iso | eng | |
dc.page.final | 86 | |
dc.page.initial | 76 | |
dc.publisher | Elsevier Science INC | |
dc.relation.projectID | CGL2012-37416-C04-02 | |
dc.relation.projectID | BES-2013 064585 | |
dc.relation.projectID | Group Micrometeorology and Climate Variability (910437) | |
dc.relation.projectID | 863.10.010 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 52 | |
dc.subject.keyword | Radiation fog | |
dc.subject.keyword | Ground fog | |
dc.subject.keyword | Layer | |
dc.subject.keyword | Stratus | |
dc.subject.keyword | Event | |
dc.subject.keyword | Feasibility | |
dc.subject.keyword | Simulation | |
dc.subject.keyword | Prediction | |
dc.subject.keyword | Airport | |
dc.subject.keyword | Models | |
dc.subject.ucm | Astrofísica | |
dc.subject.ucm | Astronomía (Física) | |
dc.title | Estimating fog-top height through near-surface micrometeorological measurements | |
dc.type | journal article | |
dc.volume.number | 170 | |
dcterms.references | Bari, D., Bergot, T., El Khlifi, M., 2015. Numerical study of a coastal fog event over casablanca, morocco. Q. J. R. Meteorol. Soc. 141, 1894–1905. Beljaars, A. C., Bosveld, F. C., 1997. Cabauw data for the validation of land surface parameterization schemes. J. Clim. 10 (6), 1172–1193. Bendix, J., Thies, B., Cermak, J., Nauß, T., 2005. Ground fog detection from space based on modis daytime data-a feasibility study. Weather Forecast. 20 (6), 989–1005. Bergot, T., Terradellas, E., Cuxart, J., Mira, A., Liechti, O., Mueller, M., Nielsen, N. W., 2007. Intercomparison of single-column numerical models for the prediction of radiation fog. J. Appl. Meteorol. Climatol. 46 (4), 504–521. Boers, R., Baltink, H. K., Hemink, H., Bosveld, F., Moerman, M., 2013. Ground-based observations and modeling of the visibility and radar reflectivity in a radiation fog layer. J. Atmos. Oceanic Technol. 30 (2), 288–300. Bosveld, F., Baas, P., Steeneveld, G., Holtslag, A., Angevine, W., Bazile, E., de Bruijn, E., Deacu, D., Edwards, J., Ek, M., et al., 2014. The gabls third intercomparison case for model evaluation, part b: Scm model intercomparison and evaluation. Boundary-layer Meteorol. 152, 157–187. Brenguier, J.-L., Pawlowska, H., Schüller, L., Preusker, R., Fischer, J., Fouquart, Y., 2000. Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci. 57 (6), 803–821. Cermak, J., Bendix, J., 2008. A novel approach to fog/low stratus detection using meteosat 8 data. Atm. Res. 87 (3), 279–292. Cermak, J., Bendix, J., 2011. Detecting ground fog from space–a microphysics-based approach. Int. J. Remote Sens. 32 (12), 3345–3371. Cuxart, J., Jiménez, M., 2012. Deep radiation fog in a wide closed valley: study by numerical modeling and remote sensing. Pure Appl. Geophys. 169 (5-6), 911–926. Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I., Conangla, L., 2000. Stable atmospheric boundary-layer experiment in spain (sables 98): a report. Boundary Layer Meteorol. 96 (3), 337–370. Dabas, A., Remy, S., Bergot, T., 2012. Use of a sodar to improve the forecast of fogs and low clouds on airports. Pure Appl. Geophys. 169 (5-6), 769–781. DOC/NOAA, 1995. Surface weather observations and reports, Federal Meteorological Handbook No. 1, 94 pp. Available from Department of Commerce, NOAA, Office of the Federal Coordinator for Meteorological Services and Supporting Research, 8455 Colesville Road, Suite 1500, Silver Spring, MD, 20910. Dupont, J.-C., Haeffelin, M., Protat, A., Bouniol, D., Boyouk, N., Morille, Y., 2012. Stratus-fog formation and dissipation: a 6-day case study. Boundary Layer Meteorol. 143 (1), 207–225. Duynkerke, P. G., 1991. Observation of a quasi-periodic oscillation due to gravity waves in a shallow radiation fog. Q. J. R. Meteorol. Soc. 117 (502), 1207–1224. Ellrod, G. P., 1995. Advances in the detection and analysis of fog at night using goes multispectral infrared imagery. Wea. Forecasting 10 (3), 606–619. Fabbian, D., de Dear, R., Lellyett, S., 2007. Application of artificial neural network forecasts to predict fog at canberra international airport. Wea. Forecasting 22 (2), 372–381. Guedalia, D., Bergot, T., 1994. Numerical forecasting of radiation fog. part ii: A comparison of model simulation with several observed fog events. Mon. Weather Rev. 122 (6), 1231–1246. Gultepe, I., Tardif, R., Michaelides, S., Cermak, J., Bott, A., Bendix, J., Müller, M., Pagowski, M., Hansen, B., Ellrod, G., Jacobs, W., Toth, G., Cober, S., 2007. Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys. 164 (6-7), 1121–1159. Jiménez, P. A., de Arellano, J. V.-G., Dudhia, J., Bosveld, F. C., 2015. Role of synoptic-and meso-scales on the evolution of the boundary-layer wind profile over a coastal region: the near-coast diurnal acceleration. Meteorol. Atmos. Phys., 1–18. Koračin, D., Lewis, J., Thompson, W. T., Dorman, C. E., Businger, J. A., 2001. Transition of stratus into fog along the california coast: Observations and modeling. J. Atmos. Sci. 58 (13), 1714–1731. Liu, D., Yang, J., Niu, S., Li, Z., 2011. On the evolution and structure of a radiation fog event in nanjing. Adv. Atmos. Sci. 28, 223–237. Menut, L., Mailler, S., Dupont, J.-C., Haeffelin, M., Elias, T., 2014. Predictability of the meteorological conditions favourable to radiative fog formation during the 2011 parisfog campaign. Boundary Layer Meteorol. 150 (2), 277-297. Nakanishi, M., 2000. Large-eddy simulation of radiation fog. Boundary Layer Meteorol. 94 (3), 461–493. Porson, A., Price, J., Lock, A., Clark, P., 2011. Radiation fog. part ii: Large-eddy simulations in very stable conditions. Boundary Layer Meteorol. 139 (2), 193–224. Price, J., 2011. Radiation fog. part i: observations of stability and drop size distributions. Boundary Layer Meteorol. 139 (2), 167–191. Price, J., Porson, A., Lock, A., 2015. An observational case study of persistent fog and comparison with an ensemble forecast model. Boundary Layer Meteorol. 155 (2), 301–327. Rémy, S., Bergot, T., 2009. Assessing the impact of observations on a local numerical fog prediction system. Q. J. R. Meteorol. Soc. 135 (642), 1248–1265. Reudenbach, C., Bendix, J., 1998. Experiments with a straightforward model for the spatial forecast of fog/low stratus clearance based on multi-source data. Meteorol. Appl. 5 (3), 205–216. Román Cascón, C., Steeneveld, G., Yagüe, C., Sastre, M., Arrillaga, J., Maqueda, G., 2015. Forecasting radiation fog at climatologically contrasting sites: evaluation of statistical methods and wrf. Q. J. R. Meteorol. Soc., in press. Román Cascón, C., Yagüe, C., Sastre, M., Maqueda, G., Salamanca, F., Viana, S., 2012. Observations and wrf simulations of fog events at the spanish northern plateau. Adv. Sci. Res. 8 (1), 11–18. Sastre, M., Yage, C., Román Cascón, C., Maqueda, G., 2015. Atmospheric boundary-layer evening transitions: A comparison between two different experimental sites. Boundary Layer Meteorol. 157 (3), 375–399. Shi, C., Wang, L., Zhang, H., Zhang, S., Deng, X., Li, Y., Qiu, M., 2012. Fog simulations based on multi-model system: a feasibility study. Pure Appl. Geophys. 169 (5-6), 941–960. Steeneveld, G., Ronda, R., Holtslag, A., 2015. The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Boundary Layer Meteorol. 154 (2), 265–289. Stolaki, S., Pytharoulis, I., Karacostas, T., 2012. A study of fog characteristics using a coupled wrf–cobel model over thessaloniki airport, greece. Pure Appl. Geophys. 169 (5-6), 961–981. Tardif, R., Rasmussen, R. M., 2007. Event-based climatology and typology of fog in the new york city region. J. Appl. Meteorol. Climatol. 46 (8), 1141–1168. Tijm, A., Holtslag, A., Van Delden, A., 1999. Observations and modeling of the sea breeze with the return current. Monthly weather review 127 (5), 625–640. Van der Velde, I., Steeneveld, G., Wichers Schreur, B., Holtslag, A., 2010. Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Weather Rev. 138 (11), 4237–4253. Ye, X., Wu, B., Zhang, H., 2015. The turbulent structure and transport in fog layers observed over the tianjin area. Atm. Res. 153, 217–234. Yi, L., Zhang, S., Thies, B., Shi, X., Trachte, K., Bendix, J., 2015. Spatio-temporal detection of fog and low stratus top heights over the yellow sea with geostationary satellite data as a precondition for ground fog detectiona feasibility study. Atm. Res. 151, 212–223. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 9a4cf43f-bd9c-4b5b-9cb2-0c257e7473de | |
relation.isAuthorOfPublication | cf5cf9ad-8e0e-4c40-966d-58da28c01b49 | |
relation.isAuthorOfPublication | 873030aa-a296-46f9-883a-7a52a9cd2909 | |
relation.isAuthorOfPublication.latestForDiscovery | 9a4cf43f-bd9c-4b5b-9cb2-0c257e7473de |
Download
Original bundle
1 - 1 of 1