Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On (V*) sets and Pelczynski's property (V*).

Loading...
Thumbnail Image

Full text at PDC

Publication date

1990

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Cambridge
Citations
Google Scholar

Citation

Abstract

The concept of (V*) set was introduced, as a dual companion of that of (V)-set, by Pelczynski in his important paper [14]. In the same paper, the so called properties (V) and (V*) are defined by the coincidence of the (V) or (V*) sets with the weakly relatively compact sets. Many important Banach space properties are (or can be) defined in the same way; that is, by the coincidence of two classes of bounded sets. In this paper, we are concerned with the study of the class of (V*) sets in a Banach space, and its relationship with other related classes. To this general study is devoted Section I. A (as far as we know) new Banach space property (we called it property weak (V*)) is defined, by imposing the coincidence of (V*) sets and weakly conditionally compact sets. In this way, property (V*) is decomposed into the conjunction of the weak (V*) property and the weak sequential completeness. In Section II, we specialize to the study of (V*) sets in Banach lattices. The main result in the section is that every order continuous Banach lattice has property weak (V*), which extends previous results of E. and P. Saab ([16]). Finally, Section III is devoted to the study of (V*) sets in spaces of Bochner integrable functions. We characterize a broad class of (V*) sets in L1(μ, E), obtaining similar results to those of Andrews [1], Bourgain [6] and Diestel [7] for other classes of subsets. Applications to the study of properties (V*) and weak (V*) are obtained. Extension of these results to vector valued Orlicz function spaces are also given.

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections