Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Espacios multisecantes a curvas proyectivas lisas

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2005

Defense date

2004

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Complutense de Madrid, Servicio de Publicaciones
Citations
Google Scholar

Citation

Abstract

En este trabajo se estudian fundamentalmente dos problemas: la obtención de fórmulas enumerativas para espacios lineales multisecantes a curvas lisas, siempre que este número sea finito y el análisis del campo de validez de las fórmulas, es decir, para qué curvas el número buscado es finito. En cuanto al primer problema, se realiza una generalización del estudio clásico de fórmulas enumerativas para rectas multisecantes a curvas al caso de planos multisecantes. Y obtenemos además una generalización para espacios lineales cualesquiera, el número de m-espacios osculadores a curvas de Pm+2 que vuelven acortar a la curva. En cuanto al campo de validez, probamos que las únicas curvas irreducibles con un número infinito de m-espacios osculadores que vuelven a cortar están en Pm+1 y su grado es mayor que m+1, generalizando así un resultado de H. Kaji. Y probamos que para grado menor que 9 las únicas curvas con infinitas rectas cuatrisecantes son planas o están en una cuádrica o es la curva de grado 8 y género 5, contenida como curva doble en una superficie reglada de grado 6 y género 1.También nos ocupamos de otras cuestiones relacionadas con rectas multisecantes especiales, como rectas bitangentes o rectas tangentes con orden de contacto mayor que 2, es decir, puntos de inflexión.

Research Projects

Organizational Units

Journal Issue

Description

Tesis de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Departamento de Álgebra, leída el 09-07-2004

Keywords

Collections