Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On the polynomial Hardy-Littlewood inequality

dc.contributor.authorAraujo, G.
dc.contributor.authorJimenez Rodriguez, P.
dc.contributor.authorMuñoz-Fernández, Gustavo A.
dc.contributor.authorNuñez-Alarcon, D.
dc.contributor.authorPellagrino, Daniel
dc.contributor.authorSeoane Sepúlveda, Juan Benigno
dc.contributor.authorSerrano-Rodriguez, D.M.
dc.date.accessioned2023-06-19T14:53:53Z
dc.date.available2023-06-19T14:53:53Z
dc.date.issued2015
dc.description.abstractWe investigate the behavior of the constants of the polynomial Hardy-Littlewood inequality.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipCNPq
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30077
dc.identifier.doi10.1007/s00013-015-0741-x
dc.identifier.issn0003-889X
dc.identifier.officialurlhttp://arxiv.org/pdf/1406.1977v2.pdf
dc.identifier.urihttps://hdl.handle.net/20.500.14352/34625
dc.issue.number3
dc.journal.titleArchiv Der Mathematik
dc.language.isoeng
dc.page.final270
dc.page.initial259
dc.publisherBirkhauser Verlag
dc.relation.projectID401735/2013-3
dc.relation.projectID461797/2014-3
dc.relation.projectIDMTM2012-34341
dc.rights.accessRightsrestricted access
dc.subject.cdu517.98
dc.subject.keywordHardy-Littlewood inequality
dc.subject.keywordBohnenblust-Hille inequality
dc.subject.keywordAbsolutely summing operators
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleOn the polynomial Hardy-Littlewood inequality
dc.typejournal article
dc.volume.number104
dcterms.references[1] N. Albuquerque, F. Bayart, D. Pellegrino and J. B. Seoane-Sepulveda, Sharp generalizations of the ultilinear Bohnenblust–Hille inequality,J. Funct. Anal., 266 (2014), 3726–3740. [2] N. Albuquerque, F. Bayart, D. Pellegrino and J. B. Seoane-Sep´ulveda, Optimal Hardy-Littlewood type nequalities for polynomials and multilinear operators, arXiv:1311.3177 [math.FA], 7Fev2014. [3] G. Araujo, D. Pellegrino and D. da Silva e Silva, On the upper bounds for the constants of the Hardy-ittlewood arXiv:1405.5849 [math.FA], 22May2014. [4] F. Bayart. Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math., 136(3):203-236,2002. [5] F. Bayart, D. Pellegrino and J. B. Seoane-Sepulveda, The Bohr radius of the n-dimensional polydisk is equivalent to p(log n)/n, arXiv:1310.2834v2 [math.FA], 15Oct2013. [6] H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (1931),600–622. [7] J. R. Campos, P. Jimenez-Rodrıguez, G. A. Muñoz-Fernandez, D. Pellegrino, J. B. Seoane-Sepulveda, On he real polynomial Bohnenblust–Hille inequality. [8] A. Defant, J.C. Diaz, D. Garcia, M. Maestre, inconditional basis and Gordon-Lewis constants for spaces of polynomials, J. Funct. Anal. 181 (2001), 119–145. [9] A. Defant, L. Frerick, J. Ortega-Cerda, M. Ounaıes, K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2), 174 (2011), 485–497. [10] V. Dimant and P. Sevilla–Peris, Summation of coefficients of polynomials on ℓp spaces, Xiv:1309.6063v1 [math.FA]. [11] G. Hardy and J. E. Littlewood, Bilinear forms ounded in space [p, q], Quart. J. Math. 5 (1934), 241–254. [12] L. A. Harris. Bounds on the derivatives of lomorphic functions of vectors. Colloque D’Analyse, Rio de Janeiro, 1972, ed. L. Nachbin, Act. Sc. et Ind. 1367, 145-163, Herman, Paris, 1975. [13] G. A. Muñoz-Fernandez, Y. Sarantopoulos, A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Math. 134 (1999), 1–33. [14] T. Praciano–Pereira, On bounded multilinear forms on a class of ℓp spaces. J. Math. Anal. Appl. 81 (1981),561–568. [15] Y. Sarantopoulos. Estimates for polynomial norms on Lp(μ)-spaces. Math. Proc. Camb. Phil. Soc. 99(1986),263-271.
dspace.entity.typePublication
relation.isAuthorOfPublicatione85d6b14-0191-4b04-b29b-9589f34ba898
relation.isAuthorOfPublication.latestForDiscoverye85d6b14-0191-4b04-b29b-9589f34ba898

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Seoane106.pdf
Size:
170.34 KB
Format:
Adobe Portable Document Format

Collections