On the polynomial Hardy-Littlewood inequality
dc.contributor.author | Araujo, G. | |
dc.contributor.author | Jimenez Rodriguez, P. | |
dc.contributor.author | Muñoz-Fernández, Gustavo A. | |
dc.contributor.author | Nuñez-Alarcon, D. | |
dc.contributor.author | Pellagrino, Daniel | |
dc.contributor.author | Seoane Sepúlveda, Juan Benigno | |
dc.contributor.author | Serrano-Rodriguez, D.M. | |
dc.date.accessioned | 2023-06-19T14:53:53Z | |
dc.date.available | 2023-06-19T14:53:53Z | |
dc.date.issued | 2015 | |
dc.description.abstract | We investigate the behavior of the constants of the polynomial Hardy-Littlewood inequality. | |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CNPq | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/30077 | |
dc.identifier.doi | 10.1007/s00013-015-0741-x | |
dc.identifier.issn | 0003-889X | |
dc.identifier.officialurl | http://arxiv.org/pdf/1406.1977v2.pdf | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/34625 | |
dc.issue.number | 3 | |
dc.journal.title | Archiv Der Mathematik | |
dc.language.iso | eng | |
dc.page.final | 270 | |
dc.page.initial | 259 | |
dc.publisher | Birkhauser Verlag | |
dc.relation.projectID | 401735/2013-3 | |
dc.relation.projectID | 461797/2014-3 | |
dc.relation.projectID | MTM2012-34341 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517.98 | |
dc.subject.keyword | Hardy-Littlewood inequality | |
dc.subject.keyword | Bohnenblust-Hille inequality | |
dc.subject.keyword | Absolutely summing operators | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.title | On the polynomial Hardy-Littlewood inequality | |
dc.type | journal article | |
dc.volume.number | 104 | |
dcterms.references | [1] N. Albuquerque, F. Bayart, D. Pellegrino and J. B. Seoane-Sepulveda, Sharp generalizations of the ultilinear Bohnenblust–Hille inequality,J. Funct. Anal., 266 (2014), 3726–3740. [2] N. Albuquerque, F. Bayart, D. Pellegrino and J. B. Seoane-Sep´ulveda, Optimal Hardy-Littlewood type nequalities for polynomials and multilinear operators, arXiv:1311.3177 [math.FA], 7Fev2014. [3] G. Araujo, D. Pellegrino and D. da Silva e Silva, On the upper bounds for the constants of the Hardy-ittlewood arXiv:1405.5849 [math.FA], 22May2014. [4] F. Bayart. Hardy spaces of Dirichlet series and their composition operators. Monatsh. Math., 136(3):203-236,2002. [5] F. Bayart, D. Pellegrino and J. B. Seoane-Sepulveda, The Bohr radius of the n-dimensional polydisk is equivalent to p(log n)/n, arXiv:1310.2834v2 [math.FA], 15Oct2013. [6] H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (1931),600–622. [7] J. R. Campos, P. Jimenez-Rodrıguez, G. A. Muñoz-Fernandez, D. Pellegrino, J. B. Seoane-Sepulveda, On he real polynomial Bohnenblust–Hille inequality. [8] A. Defant, J.C. Diaz, D. Garcia, M. Maestre, inconditional basis and Gordon-Lewis constants for spaces of polynomials, J. Funct. Anal. 181 (2001), 119–145. [9] A. Defant, L. Frerick, J. Ortega-Cerda, M. Ounaıes, K. Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2), 174 (2011), 485–497. [10] V. Dimant and P. Sevilla–Peris, Summation of coefficients of polynomials on ℓp spaces, Xiv:1309.6063v1 [math.FA]. [11] G. Hardy and J. E. Littlewood, Bilinear forms ounded in space [p, q], Quart. J. Math. 5 (1934), 241–254. [12] L. A. Harris. Bounds on the derivatives of lomorphic functions of vectors. Colloque D’Analyse, Rio de Janeiro, 1972, ed. L. Nachbin, Act. Sc. et Ind. 1367, 145-163, Herman, Paris, 1975. [13] G. A. Muñoz-Fernandez, Y. Sarantopoulos, A. Tonge, Complexifications of real Banach spaces, polynomials and multilinear maps, Studia Math. 134 (1999), 1–33. [14] T. Praciano–Pereira, On bounded multilinear forms on a class of ℓp spaces. J. Math. Anal. Appl. 81 (1981),561–568. [15] Y. Sarantopoulos. Estimates for polynomial norms on Lp(μ)-spaces. Math. Proc. Camb. Phil. Soc. 99(1986),263-271. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e85d6b14-0191-4b04-b29b-9589f34ba898 | |
relation.isAuthorOfPublication.latestForDiscovery | e85d6b14-0191-4b04-b29b-9589f34ba898 |
Download
Original bundle
1 - 1 of 1