Valence band circular dichroism in non-magnetic Ag/Ru(0001) at normal emission

dc.contributor.authorMascaraque Susunaga, Arantzazu
dc.contributor.authorMentes, T. Onur
dc.contributor.authorMcCarty, Kevin F
dc.contributor.authorMarcos, José
dc.contributor.authorSchmid, Andreas K.
dc.contributor.authorLocatelli, Andrea
dc.contributor.authorFiguera, Juan de la
dc.date.accessioned2023-06-20T03:47:57Z
dc.date.available2023-06-20T03:47:57Z
dc.date.issued2011-08-03
dc.description© Institute of Physics This research was supported by the U.S. Department of Energy under contracts No. DEAC04-94AL85000 and DE-AC02-05CH11231 and by the Spanish Ministry of Science and Innovation under Projects No. MAT2009-14578-C03-01 and No. FIS2007-64982.
dc.description.abstractFor the non-magnetic system of Ag films on Ru(0001), we have measured the circular dichroism of photoelectrons emitted along the surface normal, the geometry typically used in photoemission electron microscopy. Photoemission spectra were acquired from micrometer-sized regions having uniformly thick Ag films on a single, atomically flat Ru terrace. For a single Ag layer, we find a circular dichroism that exceeds 6% at the d-derived band region around 4.5 eV binding energy. The dichroism decreases as the Ag film thickness increases to three atomic layers. We discuss the origin of the circular dichroism in terms of the symmetry lowering that can occur even in normal emission.
dc.description.departmentDepto. de Física de Materiales
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUS Department of Energy
dc.description.sponsorshipSpanish Ministry of Science and Innovation
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28246
dc.identifier.doi10.1088/0953-8984/23/30/305006
dc.identifier.issn0953-8984
dc.identifier.officialurlhttp://dx.doi.org/10.1088/0953-8984/23/30/305006
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.relatedurlhttp://arxiv.org/abs/1301.4354
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44462
dc.issue.number30
dc.journal.titleJournal of Physics: Condensed Mater
dc.language.isoeng
dc.publisherInstitute of Physics
dc.relation.projectIDDE-AC04-94AL85000
dc.relation.projectIDDE-AC02-05CH11231
dc.relation.projectIDMAT2009-14578-C03-01
dc.relation.projectIDFIS2007-64982
dc.rights.accessRightsopen access
dc.subject.cdu538.9
dc.subject.keywordDependent photoemission intensities
dc.subject.keywordContinuous absorption
dc.subject.keywordMagnetic dichroism
dc.subject.keywordMolecules
dc.subject.keywordRu(0001)
dc.subject.keywordRegion
dc.subject.keywordFilms
dc.subject.keywordAu
dc.subject.keywordAg
dc.subject.ucmFísica de materiales
dc.titleValence band circular dichroism in non-magnetic Ag/Ru(0001) at normal emission
dc.typejournal article
dc.volume.number23
dcterms.references[1] Wolfgang Kuch and Claus M. Schneider. Magnetic dichroism in valence band photoemission. Rep. Prog. Phys., 64:147–204, 2001. [2] J. Henk, T. Scheunemann, S. V. Halilov, and R. Feder. Magnetic dichroism and electron spin polarization in photoemission: analytical results. J. Phys.: Cond. Mat., 8:47–65, 1996.Valence Band Circular Dichroism in non-magnetic Ag/Ru(0001) at normal emission 9 [3] C. M. Schneider. Soft X-ray photoemission electron microscopy as an element-specific probe of magnetic microstructures. J. Mag. Mag. Mat., 175:160–176, 1997. [4] R. Q. Hwang, J. C. Hamilton, J. L. Stevens, and S. M. Foiles. Near-surface buckling in strained metal overlayer systems. Phys. Rev. Lett., 75(23):4242–4245, 1995. [5] W. L. Ling, J. de la Figuera, N. C. Bartelt, R. Q. Hwang, A. K. Schmid, G. E. Thayer, and J. C. Hamilton. Strain relief through heterophase interface reconstruction: Ag(111)/Ru(0001). Phys. Rev. Lett., 92:116102, 2004. [6] A. Bzowski, T. K. Sham, R. E. Watson, and M. Weinert. Electronic structure of Au and Ag overlayers on Ru(001): The behavior of the noble-metal d bands. Phys. Rev. B, 51:9979, 1995. [7] WL Ling, JC Hamilton, K Thurmer, GE Thayer, J de la Figuera, RQ Hwang, CB Carter, NC Bartelt, and KF McCarty. Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001). Surf. Sci., 600:1735–1757, 2006. [8] Hubert Ebert and Gisela Schtz, editors. SpinOrbit-Influenced Spectroscopies of Magnetic Solids, volume 466. Springer Berlin Heidelberg, 1996. [9] N. A. Cherepkov. Circular dichroism of molecules in the continuous absorption region. Chem. Phys. Lett., 87:344–348, 1982. [10] Richard L. Dubs, S. N. Dixit, and V. McKoy. Circular dichroism in photoelectron angular distributions from oriented linear molecules. Phys. Rev. Lett., 54:1249, 1985. [11] F. Venturini, J. Min´ar, J. Braun, H. Ebert, and N. B. Brookes. Soft x-ray angle-resolved photoemission spectroscopy on Ag(001): Band mapping, photon momentum effects, and circular dichroism. Phys. Rev. B, 77:045126, 2008. [12] H. P. Oepen, K. Hünlich, and J. Kirschner. Spin-dependent photoemission intensities from solids. Phys. Rev. Lett., 56:496, 1986. [13] J Garbe and J Kirschner. Spin-dependent photoemission intensities from platinum(111). Phys. Rev. B, 39:9859–9864, 1989. [14] GH Fecher, J Braun, A Oelsner, C Ostertag, and G Schonhense. Dichroism in angle-resolved photoemission from Pt(111). Surf. Rev. Lett., 9(2):883–888, 2002. [15] G. Schönhense, C. Westphal, J. Bansmann, M. Getzlaff, J. Noffke, and L. Fritsche. Circular dichroism in photoemission from surfaces. Surf. Sci., 251-252:132–135, 1991. [16] H. Daimon, T. Nakatani, S. Imada, and S. Suga. Circular dichroism from non-chiral and nonmagnetic materials observed with display-type spherical mirror analyzer. J. Elec. Spec. Rel. Phen., 76:55–62, 1995. [17] G.H. Fecher. Circular dichroism in photoemission from non-magnetic materials. Jap. J. App. Phys., 38:582–587, 1999. [18] Burke Ritchie. Theoretical studies in photoelectron spectroscopy. molecular optical activity in the region of continuous absorption and its characterization by the angular distribution of photoelectrons. Phys. Rev. A, 12:567, 1975. [19] To quantify the asymetry between different light polarizations, we calculate A = (Iσ+−Iσ−) (Iσ++Iσ−) . [20] T. Schmidt, S. Heun, J. Slezak, J. Diaz, K. C. Prince, G. Lilienkamp, and E. Bauer. Speleem: Combining leem and spectroscopic imaging. Surf. Rev. Lett., 5(6):1287–1296, 1998. [21] Arantzazu Mascaraque, Lucia Aballe, José F. Marco, Tevfic Onur Mentes, Farid El Gabaly, Christoph Klein, Andreas K. Schmid, Kevin F. McCarty, Andrea Locatelli, and Juan de la Figuera. Measuring the magnetization of three monolayer thick Co islands and films by X-ray dichroism. Phys. Rev. B., 80:172401, 2009. [22] W. L. Ling, T. Giessel, K. Thurmer, R. Q. Hwang, N. C. Bartelt, and K. F. McCarty. Crucial role of substrate steps in de-wetting of crystalline thin films. Surf. Sci., 570:L297–L303, 2004. [23] H. Eckardt, L. Fritsche, and J. Noffke. Self/consistent relativistic band structure of the noble metals. J. Phys. F, 14:97, 1984. [24] J. de la Figuera, J.M. Puerta, J.I. Cerda, F. El Gabaly, and K.F. McCarty. Determining the structure of Ru(0001) from low-energy electron diffraction of a single terrace. Surf. Sci., 600:L105–L109, 2006.
dspace.entity.typePublication
relation.isAuthorOfPublication9d984e3c-69fb-476e-af0b-5134c4d26028
relation.isAuthorOfPublication.latestForDiscovery9d984e3c-69fb-476e-af0b-5134c4d26028

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mascaraque,A 17preprint.pdf
Size:
729.39 KB
Format:
Adobe Portable Document Format

Collections