Internal fundamental sequences and approximative retracts
dc.contributor.author | Laguna, V. F. | |
dc.contributor.author | Rodríguez Sanjurjo, José Manuel | |
dc.date.accessioned | 2023-06-21T02:02:40Z | |
dc.date.available | 2023-06-21T02:02:40Z | |
dc.date.issued | 1984 | |
dc.description.abstract | We introduce the notion of internal fundamental sequence and prove that any shape morphism from an arbitrary compactum X to an internally movable compactum Y is induced by an internal fundamental sequence. We use this special kind of fundamental sequences to give characterizations and some properties of AANRc-sets and AANR,-sets. The paper ends with a section devoted to internal FANR’s. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17179 | |
dc.identifier.doi | 10.1016/0166-8641(84)90041-5 | |
dc.identifier.issn | 0166-8641 | |
dc.identifier.officialurl | http://www.sciencedirect.com/science/article/pii/0166864184900415 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64694 | |
dc.issue.number | 2 | |
dc.journal.title | Topology and its Applications | |
dc.language.iso | eng | |
dc.page.final | 197 | |
dc.page.initial | 189 | |
dc.publisher | Elsevier Science | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 514 | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Shape theory | |
dc.subject.ucm | Geometría | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1204 Geometría | |
dc.subject.unesco | 1210 Topología | |
dc.title | Internal fundamental sequences and approximative retracts | |
dc.type | journal article | |
dc.volume.number | 17 | |
dcterms.references | S. Bogatyi, Approximate and fundamental retracts, Mat. Sbornik 93 (135) (1974) 90-102. (Math. USSR Sbornik 22 (1974) 91-103). K. Borsuk, Theory of Shape, (Monografie Matematycne 59, Polish Scientific Publishers, Warszawa 1975). K. Borsuk, On a class of compacta, Houston J. IMath. 1 (1975) 1-13. L. Boxer, Maps related to calmness, Topology Appl. 15 (1983) 11-17. Z. Cerin, Surjective approximate absolute (neighborhood) retracts, Topology Proceedings 6 (1981) 5-27. Z. Cerin, VP-e-movable and O-e-calm compacta and their images, Compositio klath. 45 (1981) 115-141. Z. Cerin, ANR’s and AANR’s revisited, A talk presented at the Conference on Shape Theory and Geometric Topology, Dubrovnik, Yugoslavia, 1981. M.H. Clapp, On a generalization of absolute neighborhood retracts, Fund. Math. 70 (1971) 117-l 30. J. Dydak, On internally movable compacta, Bull. Acad. Polon. Sci. 27 (1979) 107-l 10. J. Dydak and J. Segal, Shape theory: An introduction, (Lecture Notes in .Math. 688, Springer, Berlin 1978). J. Dydak and J. Segal, Approximate Polyhedra and Shape Theory, Topology Proceedings 6 ( 198 1). A. Grnurczyk, Approximate retracts and fundamental retracts. Colloq. Math. 23 (1971) 61-63. A. Granas. Fixed point theorems for the approximative ANR’s, Bull. Acad. Polon. Sci. 16 (1968) 15-19. S.T. Hu, Theory of Retracts (Wayne State Univ. Press. Detroit, 1965). S. MardeGL On Borsuk’s shape theory for compact pairs, Bull. Acad. Polon. Sci. 21 (1973) 1131-1136. S. MardeSif, Approximate polyhedra. resolutions of maps and shape fibrations, Fund. Math. 114 (1981) 53-78. S. MardeSiC and J. Segal, Shape Theory (North-Holland, Amsterdam, 1982). H. Noguchi, A generalization of absolute neighborhood retracts, Kodai Math. Sem. Reports 1 (1953) X-22. P. Patten, Refinable maps and generalized absolute neighborhood retracts, Topology Appl. 14 (1982) 183-188. S. Spiei, Movability and uniform movability, Bull. Acad. Polon. Sci. 22 (1974) 43-45. T. Watanabe. Approximative Shape Theory, to appear. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f54f1d9d-37e9-4c15-9d97-e34a6343e575 | |
relation.isAuthorOfPublication.latestForDiscovery | f54f1d9d-37e9-4c15-9d97-e34a6343e575 |
Download
Original bundle
1 - 1 of 1