Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Efficient resource provisioning for elastic Cloud services based on machine learning techniques

dc.contributor.authorLlorente, Ignacio M.
dc.contributor.authorMoreno Vozmediano, Rafael Aurelio
dc.contributor.authorSantiago Montero, Rubén Manuel
dc.contributor.authorHuedo Cuesta, Eduardo
dc.contributor.authorMartín Llorente, Ignacio
dc.date.accessioned2025-01-10T17:39:26Z
dc.date.available2025-01-10T17:39:26Z
dc.date.issued2019-04-16
dc.description.abstractThe serverless computing model, implemented by Function as a Service (FaaS) platforms, can offer several advantages for the deployment of data analytics solutions in IoT environments, such as agile and on-demand resource provisioning, automatic scaling, high elasticity, infrastructure management abstraction, and a fine-grained cost model. However, in the case of applications with strict latency requirements, the cold start problem in FaaS platforms can represent an important drawback. The most common techniques to alleviate this problem, mainly based on instance pre-warming and instance reusing mechanisms, are usually not well adapted to different application profiles and, in general, can entail an extra expense of resources. In this work, we analyze the effect of instance pre-warming and instance reusing on both application latency (response time) and resource consumption, for a typical data analytics use case (a machine learning application for image classification) with different input data patterns. Furthermore, we propose extending the classical centralized cloud-based serverless FaaS platform to a two-tier distributed edge-cloud platform to bring the platform closer to the data source and reduce network latencies.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.doi10.1186/s13677-019-0128-9
dc.identifier.issn2192-113X
dc.identifier.officialurlhttps://doi.org/10.1186/s13677-019-0128-9
dc.identifier.urihttps://hdl.handle.net/20.500.14352/113805
dc.language.isoeng
dc.publisherSpringer Nature
dc.rights.accessRightsopen access
dc.subject.ucmRedes
dc.subject.unesco3304.06 Arquitectura de Ordenadores
dc.titleEfficient resource provisioning for elastic Cloud services based on machine learning techniques
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication9ad078d4-e5c4-4ca9-8b7b-b7959fc463c6
relation.isAuthorOfPublication528196d4-672f-46f5-8927-77320f36e0ab
relation.isAuthorOfPublication1e00ea98-eddc-4639-a5e9-bff2db4f17c5
relation.isAuthorOfPublicationcc5c2f18-fcb5-46f6-b3b7-de959a39dd08
relation.isAuthorOfPublication.latestForDiscovery9ad078d4-e5c4-4ca9-8b7b-b7959fc463c6

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Latency_resource.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format

Collections