Aviso: Por labores de mantenimiento y mejora del repositorio, el martes día 1 de Julio, Docta Complutense no estará operativo entre las 9 y las 14 horas. Disculpen las molestias.
 

Planar isolated and stable fixed points have index =1

dc.contributor.authorRomero Ruiz del Portal, Francisco
dc.date.accessioned2023-06-20T09:46:37Z
dc.date.available2023-06-20T09:46:37Z
dc.date.issued2004
dc.description.abstractLet WCR2 be an open subset and f :W-f ðWÞCR2 be an orientation reversing homeomorphism. We prove that if pAW is an isolated and stable fixed point of f then the fixed point index of f at p; iR2 ð f ; pÞ; is 1. We apply our theorem to the study of the orbital stability of isolated periodic orbits of flows in four-dimensional riemannian manifolds.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.facultyInstituto de Matemática Interdisciplinar (IMI)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/18171
dc.identifier.doi10.1016/j.jde.2003.11.002
dc.identifier.issn0022-0396
dc.identifier.officialurlhttp://www.sciencedirect.com/science/journal/00220396
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50341
dc.issue.number1
dc.journal.titleJournal of Differential Equations
dc.language.isoeng
dc.page.final188
dc.page.initial179
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu517.9
dc.subject.cdu515.1
dc.subject.keywordIsolated periodic orbits
dc.subject.keywordFlows
dc.subject.keywordStability
dc.subject.keywordFixed-point index
dc.subject.keywordPrime ends compactification
dc.subject.ucmEcuaciones diferenciales
dc.subject.ucmTopología
dc.subject.unesco1202.07 Ecuaciones en Diferencias
dc.subject.unesco1210 Topología
dc.titlePlanar isolated and stable fixed points have index =1
dc.typejournal article
dc.volume.number199
dcterms.referencesD.K. Arrowsmith, C.M. Place, An Introduction to Dynamical Systems, Cambridge University Press,Cambridge, 1990. H. Bell, A fixed point theorem for plane homeomorphisms,Fund. Math. 100 (2) (1978) 119–128. N.A. Bobylek, M.A. Krasnosel’skii, Deformation of a system into an asymptotically stable system,Automat Remote Control 35 (1974) 1041–1044. C. Bonatti, J. Villadelprat, The index of stable critical points, Topol. Appl. 126 (1–2) (2002) 263–271. M. Bonino, Lefschetz index for orientation reversing planar homeomorphisms, Proc. Amer. Math.Soc. 130 (7) (2002) 2173–2177. K. Borsuk, Theory of Shape, Monografie Matematyczne 59,PWN, Warsaw, 1975. K. Borsuk, Theory of retracts, Monografie Matematyczne 44,PWN, Warsaw, 1967. L.E. Brouwer, Beweis des ebenen Translationssatzes, Math.Ann. 72 (1912) 37–54. R.F. Brown, The Lefschetz fixed point theorem, Scott Foreman Co., Glenview, Illinois, London,1971. C. Caratheodory, U¨ ber die Begrenzung einfach zusammenha ngender Gebiete, Math. Ann. 73 (1913)323–370. M.L. Cartwright, J.E. Littlewood, Some fixed point theorems, Ann. of Math. 54 (2) (1951) 1–37. C.O. Christenson, W.L. Voxman, Aspects of Topology, BCS Associates, Moscow, Idaho, 1998. E.N. Dancer, R. Ortega, The index or Lyapunov stable fixed points, J. Dyn. Differential Equations 6 (1994) 631–637. A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965) 1–8. [15] E. Erle, Stable equilibria and vector field index,Topology Appl. 49 (1993) 231–235. M. Handel, A pathological area preserving CN diffeomorphism of the plane, Proc. Amer. Math. Soc.86 (1982) 163–168. P. Hartman, Ordinary Differential Equations, Wiley, New York, London, Sydney, 1964. U. Kirchgraber, K.J. Palmer, Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization, Pitman Res. Notes in Mathematical Series, Vol. 233,Pitmann, London. M.A. Krasnosel’skii, Translation Along Trajectories of Differential Equations, Amer. Math. Soc.,Providence, RI, 1968. M.A. Krasnosel’skii, P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin,1984. K. Kuperberg, Fixed points of orientation reversing homeomorphisms of the plane, Proc. Amer.Math. Soc. 112 (1) (1991) 223–229. P. Le Calvez, Dynamique des homeomorphismes du plan au voisinage d’un point fixe, Ann. Scient.Ec. Norm. Sup. 36 (2003) 139–171. R.D. Nussbaum, The fixed point index and some applications, Seminaire de Mathematiques superieures, Les Presses de L’Universite de Montreal, 1985. R. Perez-Marco, Fixed points and circles maps, Acta Math. 179 (1997) 243–294. Ch. Pommerenke, Boundary Behavior of Conformal Maps, in: Grundlehren der mathematischen Wissenschaften, Vol. 299, Springer, Berlin, Heidelberg, New York, 1992. F.R. Ruiz del Portal, J.M. Salazar, Fixed point index of iterations of local homeomorphisms of the plane: a Conley-index approach, Topology 41 (2002) 1199–1212. H. Steinlein, Uber die verallgemeinerten Fixpunktindizes von Iterierten verdichtender Abbildungen, Manuscripta Math. 8 (1973) 252–266.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RomeroRuiz11.pdf
Size:
238.68 KB
Format:
Adobe Portable Document Format

Collections