Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Robustness of Minimum Density Power Divergence Estimators and Wald-type test statistics in loglinear models with multinomial sampling

dc.contributor.authorCalviño Martínez, Aída
dc.contributor.authorMartín Apaolaza, Nirian
dc.contributor.authorPardo Llorente, Leandro
dc.contributor.editorBrugnano, Luigi
dc.contributor.editorEfendiev, Yalchin
dc.contributor.editorKeller, André
dc.date.accessioned2024-01-10T10:10:38Z
dc.date.available2024-01-10T10:10:38Z
dc.date.issued2021
dc.description.abstractIn this paper we propose a new family of estimators, Minimum Density Power Divergence Estimators (MDPDE), as a robust generalization of maximum likelihood estimators (MLE) for the loglinear model with multinomial sampling by using the Density Power Divergence (DPD) measure introduced by Basu et al. (1998). Based on these estimators, we further develop two types of confidence intervals (asymptotic and bootstrap ones), as well as a new robust family of Wald-type test statistics for testing a nested sequence of loglinear models. Furthermore, we study theoretically the robust properties of both the MDPDE as well as Wald-type tests through the classical influence function analysis. Finally, a simulation study provides further confirmation of the validity of the theoretical results established in the paper.en
dc.description.departmentDepto. de Estadística y Ciencia de los Datos
dc.description.facultyFac. de Estudios Estadísticos
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (España)
dc.description.statuspub
dc.identifier.citationCalviño, A., Martín, N., & Pardo, L. (2021). Robustness of minimum density power divergence estimators and wald-type test statistics in loglinear models with multinomial sampling. Journal of Computational and Applied Mathematics, 386
dc.identifier.doi10.1016/j.cam.2020.113214
dc.identifier.issn0377-0427
dc.identifier.officialurlhttps://doi.org/10.1016/j.cam.2020.113214
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S0377042720305057
dc.identifier.relatedurlhttp://www.elsevier.com/locate/cam
dc.identifier.urihttps://hdl.handle.net/20.500.14352/92189
dc.issue.number113214
dc.journal.titleJournal of Computational and Applied Mathematics
dc.language.isoeng
dc.page.final19
dc.page.initial1
dc.relation.projectIDPGC2018-095194-B-I00 from
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.cdu519.243
dc.subject.keywordPoint estimation
dc.subject.keywordMLE
dc.subject.keywordConfidence intervals
dc.subject.keywordBootstrap
dc.subject.keywordInfluence function
dc.subject.keywordMonte Carlo simulation
dc.subject.ucmMuestreo (Estadística)
dc.subject.unesco1209.10 Teoría y Técnicas de Muestreo
dc.titleRobustness of Minimum Density Power Divergence Estimators and Wald-type test statistics in loglinear models with multinomial samplingen
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number386
dspace.entity.typePublication
relation.isAuthorOfPublication9910901c-7e34-482c-b57c-470f4e445cfb
relation.isAuthorOfPublication1705b043-bb96-4d44-8e13-1c2238cf1717
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscovery9910901c-7e34-482c-b57c-470f4e445cfb

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Robustness_of_Minimum_Density_Power.pdf
Size:
536.71 KB
Format:
Adobe Portable Document Format
Description:
Versión final del autor (postprint)

Collections