Solving a reaction-diffusion system with chemotaxis and
non-local terms using Generalized Finite Difference
Method. Study of the convergence
dc.contributor.author | Benito, J. J. | |
dc.contributor.author | García, A. | |
dc.contributor.author | Gavete, L. | |
dc.contributor.author | Negreanu Pruna, Mihaela | |
dc.contributor.author | Ureña, F. | |
dc.contributor.author | Vargas, M. A. | |
dc.date.accessioned | 2023-06-17T08:57:49Z | |
dc.date.available | 2023-06-17T08:57:49Z | |
dc.date.issued | 2021-06 | |
dc.description.abstract | In this paper a parabolic-parabolic chemotaxis system of PDEs that describes the evolution of a population with non-local terms is studied. We derive the discretization of the system using the meshless method called Generalized Finite Difference Method. We prove the conditional convergence of the solution obtained from the numerical method to the analytical solution in the two dimensional case. Several examples of the application are given to illustrate the accuracy and efficiency of the numerical method. We also present two examples of a parabolic-elliptic model, as generalized by the parabolic-parabolic system addressed in this paper, to show the validity of the discretization of the non-local terms. | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | FALSE | |
dc.description.sponsorship | Ministerio de Ciencia e Innovación (MICINN) | |
dc.description.sponsorship | Universidad Nacional de Educación a Distancia (UNED) | |
dc.description.sponsorship | Universidad Politécnica de Madrid (UPM) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/63721 | |
dc.identifier.doi | 10.1016/j.cam.2020.113325 | |
dc.identifier.issn | 0377-0427 | |
dc.identifier.officialurl | http://www.journals.elsevier.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/7734 | |
dc.journal.title | Journal of Computational and Applied Mathematics | |
dc.language.iso | eng | |
dc.page.initial | 113325 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2017-42907-P | |
dc.relation.projectID | 2019-IFC02 | |
dc.relation.projectID | (Research groups 2019) | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 517.98 | |
dc.subject.cdu | 519.6 | |
dc.subject.keyword | Chemotaxis system | |
dc.subject.keyword | Generalized Finite Difference | |
dc.subject.keyword | Meshless method | |
dc.subject.keyword | Asymptotic stability | |
dc.subject.keyword | Quimiotaxis | |
dc.subject.keyword | Estabilidad asintótica | |
dc.subject.keyword | Métodos sin malla | |
dc.subject.keyword | Diferencias finitas generalizadas | |
dc.subject.ucm | Matemáticas (Matemáticas) | |
dc.subject.ucm | Análisis funcional y teoría de operadores | |
dc.subject.ucm | Análisis numérico | |
dc.subject.unesco | 12 Matemáticas | |
dc.subject.unesco | 1206 Análisis Numérico | |
dc.title | Solving a reaction-diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence | |
dc.type | journal article | |
dc.volume.number | 389 | |
dcterms.references | [1] Anderson A.R., Chaplain M.A., Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol., 60 (5), 857–899,(1998). [2] Benito J. J., Garcia A., Gavete L., Negreanu M., Ure˜na F., Vargas A. M., On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences. Engineering Analysis with Boundary Elements, 113C, 181–190 (2020). [3] Ding M., Wang W., Zhou S., Zheng S., Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production. Journal of Differential Equations (2019), https://doi.org/10.1016/j.jde.2019.11.052. [4] Horstmann D., From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, Jahresbericht der Deutschen Mathematiker-Vereinigung. 105 (3), (2003), 103–165. [5] Keller EF., Segel LA. Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399-415, (1970). [6] Negreanu M., Tello J.I., On a competitive system under chemotactic effects with non-local terms. Nonlinearity, 26 (4), 1083–1103 (2013). [7] Negreanu M., Tello J.I., Vargas A.M. (2017), On a Parabolic-Elliptic chemotaxis system with periodic asymptotic behavior, Mathematical Methods in Applied Sciences, https://doi.org/10.1002/mma.5423. [8] Negreanu M., Tello J.I., Vargas A.M. (2020), On a fully Parabolic chemotaxis system with source term and periodic asymptotic behavior, to appear in Zeitschrift für angewandte Mathematik und Physik. [9] Szymanska Z., Morales Rodrigo C., Lachowicz M., Chaplain M.A.J., Mathematical modelling of cancer invasion of tissue the role and effect of nonlocal interactions. Mathematical Models and Methods in Applied Sciences, 19 (2), 257-281 (2009). [10] Ureña F., Gavete L., Benito J.J., Garc´ıa A., Vargas A.M., Solving the telegraph equation in 2-D and 3-D using generalized finite difference method (GFDM). Engineering Analysis with Boundary Elements, 112, 13–24, (2020). [11] Ureña F., Gavete L., Garcia A., Benito J. J., Vargas A. M., Solving second order non-linear parabolic PDEs using generalized finite difference method (GFDM), Journal of Computational and Applied Mathematics, 354, (2019), 221–241. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 34eacc25-4f35-4e28-9665-9a3764841087 | |
relation.isAuthorOfPublication.latestForDiscovery | 34eacc25-4f35-4e28-9665-9a3764841087 |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- negreanu-solving-preprint-jcam.pdf
- Size:
- 1.4 MB
- Format:
- Adobe Portable Document Format