Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Phase transitions in simple fluids: an application of a one-phase entropic criterion to Lennard-Jones and point Yukawa fluids

dc.contributor.authorLomba, Enrique
dc.contributor.authorLópez Martín, J. L.
dc.contributor.authorCataldo, H. M.
dc.contributor.authorFernández Tejero, Carlos
dc.date.accessioned2023-06-20T18:53:58Z
dc.date.available2023-06-20T18:53:58Z
dc.date.issued1994-06
dc.description© 1994 The American Physical Society. This work has been financed by Spanish Dirección General de Investigación Científica y Técnica (DGICYT) under Grants No. PB91-0110 and PB91-0378.
dc.description.abstractA recently proposed entropic criterion [P.V. Giaquinta and G. Guinta, Physica A 187, 145 (1992)] for the determination of phase transitions in simple fluids is applied to two-fluid models, a purely repulsive point Yukawa fluid, and a 6-12 Lennard-Jones system. Both the gas-liquid and the freezing transitions are investigated by means of integral equation theory, and assessed with simulation data available in the literature. Our results indicate that the entropic criterion is a reasonable tool for predicting the freezing transition at low temperatures, in particular for purely repulsive potentials. Comparison with other melting rules is less favorable when there is an important attractive component in the interaction. On the other hand, the determination of the gas-liquid critical point and the liquid side of the gas-liquid coexistence curve is merely qualitative. Our results, however, show the existence of a correlation between the gas-liquid transition and the location of one of the inflection points of the density-dependent excess residual entropy.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipDirección General de Investigación Científica y Técnica (DGICYT)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/23918
dc.identifier.doi10.1103/PhysRevE.49.5164
dc.identifier.issn1063-651X
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevE.49.5164
dc.identifier.relatedurlhttp://pre.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58888
dc.issue.number6-Part
dc.journal.titlePhysical Review E
dc.language.isoeng
dc.page.final5168
dc.page.initial5164
dc.publisherAmerican Physical Society
dc.relation.projectIDPB91-0110
dc.relation.projectIDPB91-0378
dc.rights.accessRightsopen access
dc.subject.cdu536
dc.subject.keywordHypernetted-chain equation
dc.subject.keywordColloidal suspensions
dc.subject.keywordSimple liquids
dc.subject.keywordCoexistence
dc.subject.keywordSimulation
dc.subject.keywordDiagram
dc.subject.keywordModel
dc.subject.keywordC-60
dc.subject.keywordFCC
dc.subject.ucmTermodinámica
dc.subject.unesco2213 Termodinámica
dc.titlePhase transitions in simple fluids: an application of a one-phase entropic criterion to Lennard-Jones and point Yukawa fluids
dc.typejournal article
dc.volume.number49
dcterms.references[1] E. Lomba, Mol. Phys. 68, 87 (1989). [2] A Cheng, M. L. Klein, and C. Caccamo, Phys. Rev. Lett. 71, 1200 (1993). [3] C. Caccamo, P. V. Giaquinta, and G. Giunta, J. Phys. Condens. Matter 5, B75 (1993). [4] P. V. Giaquinta and G. Giunta, Physica A 187, 145 (1992). [5] P. V. Giaquinta, G. Giunta, and S. P. Giarritta, Phys. Rev. A 45, R6966 (1992). [6] C. F. Tejero, J. F. Lutsko, J. L. Colot, and M. Baus, Phys. Rev. A 46, 3373 (1992). [7] P. Salgi, J. F. Guerin, and R. Rajagopalan, Colloid Polym. Sci. 270, 785 (1992). [8] M. H. J. Hagen, E. J. Meijer, G. C. A. M. Mooij, D. Frenkel, and H. N. W. Lekkerkerker, Nature 365, 425 (1993). [9] F. Lado, S. M. Foiles, and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983). [10] L. Verlet and J. J. Weis, Phys. Rev. A 5, 939 (1972). [11] D. Henderson and E. W. Grundke, J. Chem. Phys. 63, 601 (1975). [12] R. E. Nettleton and H. S. Green, J. Chem. Phys. 29, 1365 (1958). [13] A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987). [14] L. E. Reichl, A Modern Course in Statistical Physics, 1st ed. (University of Texas, Austin, 1980). [15] J. P. Hansen and L. Verlet, Phys. Rev. 184, 151 (1969). [16] E. J. Meijer and D. Frenkel, J. Chem. Phys. 94, 2269 (1991). [17] G. Dupont, S. Moulinasse, J. P. Ryckaert, and M. Baus, Mol. Phys. 79, 453 (1993). [18] M. J. Stevens and M. O. Robbins, J. Chem. Phys. 98, 2319 (1993).
dspace.entity.typePublication
relation.isAuthorOfPublication45ce99f0-8f7e-41b5-ac11-1ae7ba368c80
relation.isAuthorOfPublication.latestForDiscovery45ce99f0-8f7e-41b5-ac11-1ae7ba368c80

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
F-Tejero23.pdf
Size:
323.78 KB
Format:
Adobe Portable Document Format

Collections