Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Torelli theorem for moduli spaces of SL(r,C) -connections on a compact Riemann surface.

dc.contributor.authorBiswas, Indranil
dc.contributor.authorMuñoz, Vicente
dc.date.accessioned2023-06-20T03:32:12Z
dc.date.available2023-06-20T03:32:12Z
dc.date.issued2009
dc.description.abstractLet X be any compact connected Riemann surface of genus g, with g ≥ 3. For any r ≥ 2, let denote the moduli space of holomorphic SL(r,ℂ)-connections over X. It is known that the biholomorphism class of the complex variety is independent of the complex structure of X. If g = 3, then we assume that r ≥ 3. We prove that the isomorphism class of the variety determines the Riemann surface X uniquely up to an isomorphism. A similar result is proved for the moduli space of holomorphic GL(r,ℂ)-connections on X.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21030
dc.identifier.doi10.1142/S0219199709003260
dc.identifier.issn0219-1997
dc.identifier.officialurlhttp://www.worldscientific.com/doi/abs/10.1142/S0219199709003260
dc.identifier.relatedurlhttp://www.worldscientific.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43776
dc.issue.number1
dc.journal.titleCommunications in contemporary mathematics
dc.page.final26
dc.page.initial1
dc.publisherWorld Scientific Publ. Co. Pte. Ltd.
dc.rights.accessRightsmetadata only access
dc.subject.cdu512.7
dc.subject.keywordHolomorphic connection
dc.subject.keywordModuli space
dc.subject.keywordTorelli theorem
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleTorelli theorem for moduli spaces of SL(r,C) -connections on a compact Riemann surface.
dc.typejournal article
dc.volume.number11
dspace.entity.typePublication

Download

Collections