Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP

dc.contributor.authorSusi, Gianluca
dc.contributor.authorAntón Toro, Luis Fernando
dc.contributor.authorCanuet, Leonides
dc.contributor.authorLópez García, María Eugenia
dc.contributor.authorMaestu Unturbe, Fernando
dc.contributor.authorMirasso, Claudio R.
dc.contributor.authorPereda, Ernesto
dc.date.accessioned2025-01-29T10:07:42Z
dc.date.available2025-01-29T10:07:42Z
dc.date.issued2018-10-31
dc.description"Viera y Clavijo fellowship" "María de Maeztu Program for Units of Excellence in R&D (MDM-2018-2022)"
dc.description.abstractHumans perform remarkably well in many cognitive tasks including pattern recognition. However, the neuronal mechanisms underlying this process are not well understood. Nevertheless, artificial neural networks, inspired in brain circuits, have been designed and used to tackle spatio-temporal pattern recognition tasks. In this paper we present a multi-neuronal spike pattern detection structure able to autonomously implement online learning and recognition of parallel spike sequences (i.e., sequences of pulses belonging to different neurons/neural ensembles). The operating principle of this structure is based on two spiking/synaptic neurocomputational characteristics: spike latency, which enables neurons to fire spikes with a certain delay and heterosynaptic plasticity, which allows the own regulation of synaptic weights. From the perspective of the information representation, the structure allows mapping a spatio-temporal stimulus into a multi-dimensional, temporal, feature space. In this space, the parameter coordinate and the time at which a neuron fires represent one specific feature. In this sense, each feature can be considered to span a single temporal axis. We applied our proposed scheme to experimental data obtained from a motor-inhibitory cognitive task. The results show that out method exhibits similar performance compared with other classification methods, indicating the effectiveness of our approach. In addition, its simplicity and low computational cost suggest a large scale implementation for real time recognition applications in several areas, such as brain computer interface, personal biometrics authentication, or early detection of diseases.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (España)
dc.description.sponsorshipAgencia Estatal de Investigación (España)
dc.description.sponsorshipEuropean Commission
dc.description.statuspub
dc.identifier.citationSusi G, Antón Toro L, Canuet L, López ME, Maestú F, Mirasso CR and Pereda E (2018) A Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP. Front. Neurosci. 12:780. doi: 10.3389/fnins.2018.00780
dc.identifier.doi10.3389/fnins.2018.00780
dc.identifier.essn1662-453X
dc.identifier.issn1662-4548
dc.identifier.officialurlhttps://doi.org/10.3389/fnins.2018.00780
dc.identifier.relatedurlhttps://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00780/full
dc.identifier.urihttps://hdl.handle.net/20.500.14352/116802
dc.journal.titleFrontiers in Neuroscience
dc.language.isoeng
dc.page.final780-14
dc.page.initial780-1
dc.publisherFrontiers Media
dc.relation.projectIDPTA-2015-10395-I
dc.relation.projectIDIJCI-2016-30662
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2016-80063-C3-3-R/ES/DESARROLLANDO UNA DESCODIFICACION DE DATOS DE FORMA OPTICA EN REDES DE COMUNICACIONES POR FIBRA UTILIZANDO DISPOSITIVOS FOTONICOS NEURO-INSPIRADOS
dc.rightsAttribution 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.cdu57.087.1
dc.subject.keywordcoincidence detection
dc.subject.keywordspiking neurons
dc.subject.keywordspike latency
dc.subject.keyworddelay
dc.subject.keywordheterosynaptic plasticity,
dc.subject.keywordSTDP
dc.subject.keywordGo/NoGo
dc.subject.ucmBioinformática
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.ucmInformática médica y telemedicina
dc.subject.unesco2404 Biomatemáticas
dc.subject.unesco2406.06 Física Medica
dc.titleA Neuro-Inspired System for Online Learning and Recognition of Parallel Spike Trains, Based on Spike Latency, and Heterosynaptic STDP
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7
relation.isAuthorOfPublication0dd44aef-b498-4da7-99b1-fd392e062cad
relation.isAuthorOfPublicationddd4612a-44c8-4cb3-bd54-2332d6f37877
relation.isAuthorOfPublicationafa98131-b2fe-40fd-8f89-f3994d80ab72
relation.isAuthorOfPublication.latestForDiscovery20ae4bbe-1ac0-42b8-98b1-3e3080aeeba7

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Neuro-Inspired System.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format

Collections