Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A One Line Derivation of EGARCH

Loading...
Thumbnail Image

Official URL

Full text at PDC

Publication date

2014

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH) specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also accommodate leverage, which is the negative correlation between returns shocks and subsequent shocks to volatility. However, there are as yet no statistical properties available for the (quasi-) maximum likelihood estimator of the EGARCH parameters. It is often argued heuristically that the reason for the lack of statistical properties arises from the presence in the model of an absolute value of a function of the parameters, which does not permit analytical derivatives or the derivation of statistical properties.It is shown in this paper that: (i)the EGARCH model can be derived from a random coefficient complex nonlinear moving average (RCCNMA) process;and (ii) the reason for the lack of statistical properties of the estimators of EGARCH is that the stationarity and invertibility conditions for the RCCNMA process are not known.

Research Projects

Organizational Units

Journal Issue

Description

For financial support, the first author wishes to acknowledge the Australian Research Council and the National Science Council, Taiwan.

Unesco subjects

Keywords