Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonlinear fiber gyroscope for quantum metrology

dc.contributor.authorLuis Aina, Alfredo
dc.contributor.authorMorales, Irene
dc.contributor.authorRivas Vargas, Ángel
dc.date.accessioned2023-06-18T06:55:08Z
dc.date.available2023-06-18T06:55:08Z
dc.date.issued2016-07-18
dc.description©2016 American Physical Society. We thank Prof. L. Pezzé for helpful comments. We acknowledge financial support from Spanish Ministerio de Economía y Competitividad Projects No. FIS2012-33152 and No. FIS2012-35583, and from the Comunidad Autónoma de Madrid research consortium QUITEMAD+ Grant No. S2013/ICE-2801.
dc.description.abstractWe examine the performance of a nonlinear fiber gyroscope for improved signal detection beating the quantum limits of its linear counterparts. The performance is examined when the nonlinear gyroscope is illuminated by practical field states, such as coherent and quadrature squeezed states. This is compared with the case of more ideal probes such as photon-number states.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/38907
dc.identifier.doi10.1103/PhysRevA.94.013830
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.94.013830
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24580
dc.issue.number1
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final013830_7
dc.page.initial013830_1
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2012-33152
dc.relation.projectIDFIS2012-35583
dc.relation.projectIDQUITEMAD+ (S2013/ICE-2801)
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordHeisenberg limit
dc.subject.keywordInterferometer
dc.subject.keywordPropagation states
dc.subject.keywordLight
dc.subject.keywordSensitivity
dc.subject.keywordStatistics
dc.subject.keywordNoise
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleNonlinear fiber gyroscope for quantum metrology
dc.typejournal article
dc.volume.number94
dcterms.referencesA. Luis, Nonlinear transformations and the Heisenberg limit, Phys. Lett. A 329, 8 (2004). S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Generalized Limits for Single-Parameter Quantum Estimation, Phys. Rev. Lett. 98, 090401 (2007). S. Boixo, A. Datta, M. J. Davis, S. T. Flammia, A. Shaji, and C. M. Caves, Quantum Metrology: Dynamics versus Entanglement, Phys. Rev. Lett. 101, 040403 (2008). S. Boixo, A. Datta, M. J. Davis, A. Shaji, A. B. Tacla, and C. M. Caves, Quantum-limited metrology and Bose-Einstein condensates, Phys. Rev. A 80, 032103 (2009). C. Gross, T. Zibold, E. Nicklas, J. Estéve, and M. K. Oberthaler, Nonlinear atom interferometer surpasses classical precision limit, Nature 464, 1165 (2010). M. Napolitano and M. W. Mitchell, Nonlinear metrology with a quantum interface, New J. Phys. 12, 093016 (2010). A. B. Tacla, S. Boixo, A. Datta, A. Shaji, and C. M. Caves, Nonlinear interferometry with Bose-Einstein condensates, Phys. Rev. A 82, 053636 (2010). A. Rivas and A. Luis, Precision Quantum Metrology and Nonclassicality in Linear and Nonlinear Detection Schemes, Phys. Rev. Lett. 105, 010403 (2010). A. Luis, Quantum-limited metrology with nonlinear detection schemes, SPIE Reviews 1, 018006 (2010). M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R. J. Sewell, and M. W. Mitchell, Interaction-based quantum metrology showing scaling beyond the Heisenberg limit, Nature 471, 486 (2011). R. J. Sewell, M. Napolitano, N. Behbood, G. Colangelo, F. Martin Ciurana, and M. W. Mitchell, Ultrasensitive Atomic Spin Measurements with a Nonlinear Interferometer, Phys. Rev. X 4, 021045 (2014). A. Luis and A. Rivas, Nonlinear Michelson interferometer for improved quantum metrology, Phys. Rev. A 92, 022104 (2015). X. Jin, M. Lebrat, L. Zhang, K. Lee, T. Bartley, M. Barbieri, J. Nunn, A. Datta, and I. A. Walmsley, Surpassing the Conventional Heisenberg Limit using Classical Resources, CLEO: QELS Fundamental Science 2013, San Jose, CA, OSA Technical Digest (online) (OSA, Washington, D.C., 2013). S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Improvement of Frequency Standards with Quantum Entanglement, Phys. Rev. Lett. 79, 3865 (1997). R. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel, Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600, Phys. Rev. A 88, 041802(R) (2013). R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołodyński, Quantum limits in optical interferometry, Prog. Opt. 60, 345 (2015). K. U. Schreiber and J.-P. R. Wells, Large ring lasers for rotation sensing, Rev. Sci. Instrum. 84, 041101 (2013). B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016). M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997). L. M. Rico-Gutierrez, T. P. Spiller, and J. A. Dunningham, Quantum-enhanced gyroscopy with rotating anisotropic Bose Einstein condensates, New J. Phys. 17, 043022 (2015). M. J. Woolley, G. J. Milburn, and C. M. Caves, Nonlinear quantum metrology using coupled nanomechanical resonators, New J. Phys. 10, 125018 (2008). C. González-Santander, F. Domínguez-Adame, and R. A. Römer, Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring, Phys. Rev. B 84, 235103 (2011). J. Cheng, Quantum metrology for simultaneously estimating the linear and nonlinear phase shifts, Phys. Rev. A 90, 063838 (2014). M. Toren and Y. Ben-Aryeh, The problem of propagation in quantum optics, with applications to amplification, coupling of EM modes and distributed feedback lasers, Quantum Opt. 6, 425 (1994); J. Reháček, L. Mišta Jr., and J. Peřina, Codirectional simulation of contradirectional propagation, J. Mod. Opt. 46, 801 (1999); J. Peřina Jr. and J. Peřina, Quantum statistics of nonlinear optical couplers, Prog. Opt. 41, 361 (2000); A. Lukš and V. Peřinová, Canonical quantum description of light propagation in dielectric media, ibid. 43, 295 (2002). D. Maldonado-Mundo and A. Luis, Metrological resolution and minimum uncertainty states in linear and nonlinear signal detection schemes, Phys. Rev. A 80, 063811 (2009). C. W. Helstrom, Minimum mean-squared error of estimates in quantum statistics, Phys. Lett. A 25, 101 (1967); The minimum variance of estimates in quantum signal detection, IEEE Trans. Inform. Theory 14, 234 (1968); C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976); S. L. Braunstein and C. M. Caves, Statistical Distance and the Geometry of Quantum States, Phys. Rev. Lett. 72, 3439 (1994). V. Peřinová, A. Lukš, and J. Křepelka, States of the optimum Fisher measure of information for quantum interferometry, Phys. Rev. A 73, 063807 (2006); G. A. Durkin and J. P. Dowling, Local and Global Distinguishability in Quantum Interferometry, Phys. Rev. Lett. 99, 070801 (2007). C. M. Caves, Quantum-mechanical noise in an interferometer, Phys. Rev. D 23, 1693 (1981); M. Xiao, L.-A. Wu, and H. J. Kimble, Precision Measurement Beyond the Shot-Noise Limit, Phys. Rev. Lett. 59, 278 (1987); P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, Squeezed-Light–Enhanced Polarization Interferometer, ibid. 59, 2153 (1987); A gravitational wave observatory operating beyond the quantum shot-noise limit, Nat. Phys. 7, 962 (2011); Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light, Nat. Photon. 7, 613 (2013). A. Monras, Optimal phase measurements with pure Gaussian states, Phys. Rev. A 73, 033821 (2006); M. D. Lang and C. M. Caves, Optimal Quantum-Enhanced Interferometry using a Laser Power Source, Phys. Rev. Lett. 111, 173601 (2013). L. Pezzé and A. Smerzi, Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light, Phys. Rev. Lett. 100, 073601 (2008). P. W. Atkins and J. C. Dobson, Angular momentum coherent states, Proc. R. Soc. London, Ser. A 321, 321 (1971). M. J. Holland and K. Burnett, Interferometric Detection of Optical Phase Shifts at the Heisenberg Limit, Phys. Rev. Lett. 71, 1355 (1993); T. Kim, J. Shin, Y. Ha, H. Kim, G. Park, T. G. Noh, and C. K. Hong, The phase-sensitivity of a MachZehnder interferometer for the Fock state inputs, Opt. Commun. 156, 37 (1998); H. Uys and P. Meystre, Quantum states for Heisenberg-limited interferometry, Phys. Rev. A 76, 013804 (2007); F. W. Sun, B. H. Liu, Y. X. Gong, Y. F. Huang, Z. Y. Ou, and G. C. Guo, Experimental demonstration of phase measurement precision beating standard quantum limit by projection measurement, Europhys. Lett. 82, 24001 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2
relation.isAuthorOfPublication1d87b837-7271-4251-a083-ba395dac6c4b
relation.isAuthorOfPublication.latestForDiscoveryb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luis,A147libre.pdf
Size:
155.05 KB
Format:
Adobe Portable Document Format

Collections