Higher order dual varieties of projective surfaces
dc.contributor.author | Mallavibarrena Martínez de Castro, Raquel | |
dc.contributor.author | Lanteri, Antonio | |
dc.date.accessioned | 2023-06-20T16:59:24Z | |
dc.date.available | 2023-06-20T16:59:24Z | |
dc.date.issued | 1999 | |
dc.description.abstract | We investigate higher order dual varieties of projective manifolds whose osculatory behavior is the best possible, in particular, for a k-jet ample surface we prove the nondegeneratedness of the k-th dual variety and for 2-regular surfaces we investigate the degree of the second dual variety. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16639 | |
dc.identifier.doi | 10.1080/00927879908826733 | |
dc.identifier.issn | 0092-7872 | |
dc.identifier.officialurl | http://www.tandfonline.com/doi/pdf/10.1080/00927879908826733 | |
dc.identifier.relatedurl | http://www.tandfonline.com/loi/lagb20 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/57580 | |
dc.issue.number | 10 | |
dc.journal.title | Communications in Algebra | |
dc.language.iso | eng | |
dc.page.final | 4851 | |
dc.page.initial | 4827 | |
dc.publisher | Taylor & Francis | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.71 | |
dc.subject.keyword | surface (complex projective) | |
dc.subject.keyword | jet bundles | |
dc.subject.keyword | k-jet ampleness | |
dc.subject.keyword | k-regularity | |
dc.subject.keyword | duality | |
dc.subject.keyword | Scrolls | |
dc.subject.keyword | Adjunction | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Higher order dual varieties of projective surfaces | |
dc.type | journal article | |
dc.volume.number | 27 | |
dcterms.references | E. Arbarello, M. Cornalba, Ph. Griffiths, and J . Harris, Geometry of Algebmic Curves,Volume I , Springer-Verlag, New York, 1985. E. Ballico, A characterization of the Veronese surface, Proc. Amer. Math. Soc. 105 (1989), 531-534. E. Ballico, R. Piene, and H.S. Tai, A chamcterization of balanced mtiontrl normal surface scrolls in terns of their osculating spaces, II, Math. Scand. 70 (1992), 204-206. A. Beauville, L'application canonique pour les surfaces de type g i n h l , Invent. Math. 55 (1979), 121-140. M. Beltrametti and A. J. Sommese, On k-spannedness for projective surfaces, Algebraic Geometry, Proc. L'Aquila, 1988 (A. J. Sommese et al., eds.), Lecture Notes in Math., vol. 1417, Springer, 1990, pp. 24-51. M.Beltrametti and A.J.Sommese, On k-jet ampleness, Complex Analysis and Geometry (V. Ancona and A. Silva, eds.), The Univ. Series in Math., Plenum Press, 1993, pp. 355-376. M. Beltrametti and A. J. Sommese , On the preservation of k-very amplenees under adjunction, Math. Z. 212 (1993), 257-283. M. Beltrametti and A. J. Sommese, The Adjunction Theory of Complez Projective Varieties, Expositions in Math., vol. 16, De Gruyter, 1995. A. Biancofiore and E. L. Livorni, On the genw of a hyperplane section of a geometrically ruled surface, Ann. di Mat. Pura ed Appl. (IV) 147 (1987), 173-185. M. Demazure, Surfaces de Del Pezzo, I-V, Sdminaire sur les Singularit& des Surfaces, Lect. Notes in Math., vol. 777, 1980, pp. 23-69. L. Ein, Varieties with small dual varieties, I, Invent. Math. 86 (1986), 63-74. W. Fulton, S. Kleiman, R. Piene and H. Tai, Some eztrinsic chamcterizatioru of the projective space, Bull. Soc. Math. fiance 113 (1985), 205-210. Ph. Griffiths and J. Harris, Principles of Algebmic Geometry, Wiley-Interscience, New York, 1978. R. Hartshorne, Algebmic Geometry, Springer - Verlag, New York - Heidelberg - Berlin, 1977. P. Ionescu, Embedded projective varieties with small invariants, Algebraic Geometry, Proc. Bucharest, 1982 (L. Bgdescu et al., eds.), Lecture Notes in Math., vol. 1056, Springer, 1984, pp. 142-187. S. L. Kleiman, Tangency and duality, Proc. 1984 Vancouver Conference in Algebraic Geometry (J. Carrel1 et al., eds.), Canad. Math. Soc. Conf. Proc., vol. 6, 1986, pp. 163-225. A. Lanteri, On the class of a projective algebraic surface, Arch. Math. 45 (1985), 79-85. A. Lanteri, On the class of an elliptic projective surface, Arch. Math. 64 (1995), 359-368. A. Lanteri and F. Tonoli, Ruled surfaces with small class, Comm. Alg. 24 (1996), 3501-3512. A. Lanteri, M. Palleschi and A. J. Sommese, On the discriminant locw of an ample and spanned line bundle, J. reine angew. Math. 477 (1996), 199-219. R. Mallavibarrena, R. Piene, Dudity for elliptic normal surface scrolls, Enumerative Algebraic Geometry (S. L. Kleiman and A. Thorup, eds.), Contemporary Mathematics, vol. 123, Amer. Math. Soc., 1991, pp. 149-160. G. Ottaviani, Varieth proiettive di piccola codimensione, Notes of INDAM course, 1st. Naz. di Aka Matem., Roma, 1995. R. Piene, Numerical characters of a curve in projective space, Real and Complex Singularities (P. Holm, ed.), Proc. Symposium in Math., Oslo, 1976, Sijthoff and Noordhoff, 1977, pp. 475-495. R. Piene, A note on higher order dual varieties, with an application to scrolls, Singularities (P. Orlik, ed.), Proc. Symposia Pure Math., vol. 40, Amer. Math. Soc., 1983, pp. 335-342. R. Piene and G. Sacchiero, Duality for mtional normal scrolls, Comm. Alg. 12 (1984), 1041-1066. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1