Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Higher order dual varieties of projective surfaces

dc.contributor.authorMallavibarrena Martínez de Castro, Raquel
dc.contributor.authorLanteri, Antonio
dc.date.accessioned2023-06-20T16:59:24Z
dc.date.available2023-06-20T16:59:24Z
dc.date.issued1999
dc.description.abstractWe investigate higher order dual varieties of projective manifolds whose osculatory behavior is the best possible, in particular, for a k-jet ample surface we prove the nondegeneratedness of the k-th dual variety and for 2-regular surfaces we investigate the degree of the second dual variety.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16639
dc.identifier.doi10.1080/00927879908826733
dc.identifier.issn0092-7872
dc.identifier.officialurlhttp://www.tandfonline.com/doi/pdf/10.1080/00927879908826733
dc.identifier.relatedurlhttp://www.tandfonline.com/loi/lagb20
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57580
dc.issue.number10
dc.journal.titleCommunications in Algebra
dc.language.isoeng
dc.page.final4851
dc.page.initial4827
dc.publisherTaylor & Francis
dc.rights.accessRightsrestricted access
dc.subject.cdu512.71
dc.subject.keywordsurface (complex projective)
dc.subject.keywordjet bundles
dc.subject.keywordk-jet ampleness
dc.subject.keywordk-regularity
dc.subject.keywordduality
dc.subject.keywordScrolls
dc.subject.keywordAdjunction
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleHigher order dual varieties of projective surfaces
dc.typejournal article
dc.volume.number27
dcterms.referencesE. Arbarello, M. Cornalba, Ph. Griffiths, and J . Harris, Geometry of Algebmic Curves,Volume I , Springer-Verlag, New York, 1985. E. Ballico, A characterization of the Veronese surface, Proc. Amer. Math. Soc. 105 (1989), 531-534. E. Ballico, R. Piene, and H.S. Tai, A chamcterization of balanced mtiontrl normal surface scrolls in terns of their osculating spaces, II, Math. Scand. 70 (1992), 204-206. A. Beauville, L'application canonique pour les surfaces de type g i n h l , Invent. Math. 55 (1979), 121-140. M. Beltrametti and A. J. Sommese, On k-spannedness for projective surfaces, Algebraic Geometry, Proc. L'Aquila, 1988 (A. J. Sommese et al., eds.), Lecture Notes in Math., vol. 1417, Springer, 1990, pp. 24-51. M.Beltrametti and A.J.Sommese, On k-jet ampleness, Complex Analysis and Geometry (V. Ancona and A. Silva, eds.), The Univ. Series in Math., Plenum Press, 1993, pp. 355-376. M. Beltrametti and A. J. Sommese , On the preservation of k-very amplenees under adjunction, Math. Z. 212 (1993), 257-283. M. Beltrametti and A. J. Sommese, The Adjunction Theory of Complez Projective Varieties, Expositions in Math., vol. 16, De Gruyter, 1995. A. Biancofiore and E. L. Livorni, On the genw of a hyperplane section of a geometrically ruled surface, Ann. di Mat. Pura ed Appl. (IV) 147 (1987), 173-185. M. Demazure, Surfaces de Del Pezzo, I-V, Sdminaire sur les Singularit& des Surfaces, Lect. Notes in Math., vol. 777, 1980, pp. 23-69. L. Ein, Varieties with small dual varieties, I, Invent. Math. 86 (1986), 63-74. W. Fulton, S. Kleiman, R. Piene and H. Tai, Some eztrinsic chamcterizatioru of the projective space, Bull. Soc. Math. fiance 113 (1985), 205-210. Ph. Griffiths and J. Harris, Principles of Algebmic Geometry, Wiley-Interscience, New York, 1978. R. Hartshorne, Algebmic Geometry, Springer - Verlag, New York - Heidelberg - Berlin, 1977. P. Ionescu, Embedded projective varieties with small invariants, Algebraic Geometry, Proc. Bucharest, 1982 (L. Bgdescu et al., eds.), Lecture Notes in Math., vol. 1056, Springer, 1984, pp. 142-187. S. L. Kleiman, Tangency and duality, Proc. 1984 Vancouver Conference in Algebraic Geometry (J. Carrel1 et al., eds.), Canad. Math. Soc. Conf. Proc., vol. 6, 1986, pp. 163-225. A. Lanteri, On the class of a projective algebraic surface, Arch. Math. 45 (1985), 79-85. A. Lanteri, On the class of an elliptic projective surface, Arch. Math. 64 (1995), 359-368. A. Lanteri and F. Tonoli, Ruled surfaces with small class, Comm. Alg. 24 (1996), 3501-3512. A. Lanteri, M. Palleschi and A. J. Sommese, On the discriminant locw of an ample and spanned line bundle, J. reine angew. Math. 477 (1996), 199-219. R. Mallavibarrena, R. Piene, Dudity for elliptic normal surface scrolls, Enumerative Algebraic Geometry (S. L. Kleiman and A. Thorup, eds.), Contemporary Mathematics, vol. 123, Amer. Math. Soc., 1991, pp. 149-160. G. Ottaviani, Varieth proiettive di piccola codimensione, Notes of INDAM course, 1st. Naz. di Aka Matem., Roma, 1995. R. Piene, Numerical characters of a curve in projective space, Real and Complex Singularities (P. Holm, ed.), Proc. Symposium in Math., Oslo, 1976, Sijthoff and Noordhoff, 1977, pp. 475-495. R. Piene, A note on higher order dual varieties, with an application to scrolls, Singularities (P. Orlik, ed.), Proc. Symposia Pure Math., vol. 40, Amer. Math. Soc., 1983, pp. 335-342. R. Piene and G. Sacchiero, Duality for mtional normal scrolls, Comm. Alg. 12 (1984), 1041-1066.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Malla05.pdf
Size:
1005.79 KB
Format:
Adobe Portable Document Format

Collections