Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Attractor Basin Analysis of the Hopfield Model: The Generalized quadratic knapsack problem.

dc.book.titleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.contributor.authorGarcia, L.
dc.contributor.authorTalavan, P. M.
dc.contributor.authorYáñez, Javier
dc.contributor.editorRojas, Ignacio
dc.contributor.editorJoya, Gonzalo
dc.contributor.editorCatala, Andreu
dc.date.accessioned2023-06-18T00:21:51Z
dc.date.available2023-06-18T00:21:51Z
dc.date.issued2017
dc.description14th International Work-Conference on Artificial Neural Networks, IWANN 2017; Cadiz; Spain; 14 June 2017 through 16 June 2017; Code 192889
dc.description.abstractThe Continuous Hopfield Neural Network (CHN) is a neural network which can be used to solve some optimization problems. The weights of the network are selected based upon a set of parameters which are deduced by mapping the optimization problem to its associated CHN. When the optimization problem is the Traveling Salesman Problem, for instance, this mapping process leaves one free parameter; as this parameter decreases, better solutions are obtained. For the general case, a Generalized Quadratic Knapsack Problem (GQKP), there are some free parameters which can be related to the saddle point of the CHN. Whereas in simple instances of the GQKP, this result guarantees that the global optimum is always obtained, in more complex instances, this is far more complicated. However, it is shown how in the surroundings of the saddle point the attractor basins for the best solutions grow as the free parameter decreases, making saddle point neighbors excellent starting point candidates for the CHN. Some technical results and some computational experiences validate this behavior.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/43807
dc.identifier.doi10.1007/978-3-319-59153-7_37
dc.identifier.isbn978-331959152-0
dc.identifier.officialurlhttps://link.springer.com/chapter/10.1007/978-3-319-59153-7_37
dc.identifier.relatedurlhttps://link.springer.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/19452
dc.issue.number10305
dc.language.isoeng
dc.page.final431
dc.page.initial420
dc.page.total761
dc.publisherSpringer Verlag
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rights.accessRightsrestricted access
dc.subject.cdu519.22-7
dc.subject.keywordArtificial neural networks
dc.subject.keywordOptimization
dc.subject.keywordMachine Learning
dc.subject.keywordHopfield network
dc.subject.ucmEstadística aplicada
dc.titleAttractor Basin Analysis of the Hopfield Model: The Generalized quadratic knapsack problem.
dc.typebook part
dc.volume.number1
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yañez12.pdf
Size:
4.61 MB
Format:
Adobe Portable Document Format