Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Rényi statistics for testing composite hypotheses in general exponential models.

dc.contributor.authorMorales González, Domingo
dc.contributor.authorPardo Llorente, Leandro
dc.contributor.authorPardo Llorente, María del Carmen
dc.contributor.authorVadja, Igor
dc.date.accessioned2023-06-20T09:45:01Z
dc.date.available2023-06-20T09:45:01Z
dc.date.issued2004-04
dc.description.abstractWe introduce a family of Renyi statistics of orders r is an element of R for testing composite hypotheses in general exponential models, as alternatives to the previously considered generalized likelihood ratio (GLR) statistic and generalized Wald statistic. If appropriately normalized exponential models converge in a specific sense when the sample size (observation window) tends to infinity, and if the hypothesis is regular, then these statistics are shown to be chi(2)-distributed under the hypothesis. The corresponding Renyi tests are shown to be consistent. The exact sizes and powers of asymptotically alpha-size Renyi, GLR and generalized Wald tests are evaluated for a concrete hypothesis about a bivariate Levy process and moderate observation windows. In this concrete situation the exact sizes of the Renyi test of the order r = 2 practically coincide with those of the GLR and generalized Wald tests but the exact powers of the Renyi test are on average somewhat better.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17740
dc.identifier.doi10.1080/02331880310001634647
dc.identifier.issn0233-1888
dc.identifier.officialurlhttp://www.tandfonline.com/doi/abs/10.1080/02331880310001634647
dc.identifier.relatedurlhttp://www.tandfonline.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/50297
dc.issue.number2
dc.journal.titleStatistics
dc.page.final147
dc.page.initial133
dc.publisherTaylor & Francis
dc.rights.accessRightsmetadata only access
dc.subject.cdu519.213.2
dc.subject.keywordnatural exponential models
dc.subject.keywordtesting composite hypotheses
dc.subject.keywordgeneralized likelihood ratio statistics
dc.subject.keywordgeneralized Wald statistics
dc.subject.keywordRenyi statistics
dc.subject.keywordhypotheses about Levy processes
dc.subject.keywordfamilies.
dc.subject.ucmEstadística matemática (Matemáticas)
dc.subject.unesco1209 Estadística
dc.titleRényi statistics for testing composite hypotheses in general exponential models.
dc.typejournal article
dc.volume.number38
dcterms.referencesBhattacharyya, A. (1946). On some analogues to the amount of information and their uses in statistical estimation. Sankhya, 8, 1–14. Küchler, U. and Sørensen, M. (1994). Exponential families of stochastic processes and Lévy processes. Journal of Statistical Planning and Inference, 39, 211–237. Küchler, U. and Sørensen, M. (1997). Exponential Families of Stochastic Processes. Springer-Verlag, Berlin. Kullback, S. (1959). Information Theory and Statistics. J. Wiley, New York. Liese, F. and Vajda, I. (1987). Convex Statistical Distances. Teubner, Leipzig. Morales, D., Prado, L., and Vajda, I. (1997). Some new statistics for testing hypotheses in parametric models. Journal of Multivariate Analysis, 62, 137–168. Morales, D., Pardo, L. and Vajda, I. (2000). Rényi statistics in directed families of exponential experiments. Statistics, 34, 151–174. Morales, D., Prado, L., Pardo, M. C. and Vajda, I. (2000). Extension of the Wald statistic to models with dependent observations. Metrika, 52, 97–113. Pardo, L., Pardo, M. C. and Zografos, K. (1999). Homogeneity for multinomial populations based on φ -divergences. Journal of the Japan Statistical Society, 29, 213–228. Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. Vladimirov, V. S. (1965). Methods of the Theory of Functions of Many Complex Variables. The M.I.T. Press, Massachusetts.
dspace.entity.typePublication
relation.isAuthorOfPublication4d5cedd9-975b-43fb-bc2e-f55dec36a2bf
relation.isAuthorOfPublicationa6409cba-03ce-4c3b-af08-e673b7b2bf58
relation.isAuthorOfPublication.latestForDiscovery4d5cedd9-975b-43fb-bc2e-f55dec36a2bf

Download

Collections